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Figure 1: We apply our turbulence model to a high-resolution FLIP simulation (> 12×106 particles). Zoom-ins compare the unmodified
input surface (top) to our output (bottom). Even at high resolutions, the input simulation fails to resolve small scale details, which our method
is capable of adding. In this extreme example, our entire post-process adds an overhead of roughly a third of the full simulation time.

Abstract

We present a method to increase the apparent resolution of particle-
based liquid simulations. Our method first outputs a dense, tem-
porally coherent, regularized point set from a coarse particle-based
liquid simulation. We then apply a surface-only Lagrangian wave
simulation to this high-resolution point set. We develop novel meth-
ods for seeding and simulating waves over surface points, and use
them to generate high-resolution details. We avoid error-prone
surface mesh processing, and robustly propagate waves without
the need for explicit connectivity information. Our seeding strat-
egy combines a robust curvature evaluation with multiple bands of
seeding oscillators, injects waves with arbitrarily fine-scale struc-
tures, and properly handles obstacle boundaries. We generate de-
tailed fluid surfaces from coarse simulations as an independent
post-process that can be applied to most particle-based fluid solvers.
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1 Introduction

Simulating the behavior of fluids is a long standing problem that
often requires visual details resolved to a very fine resolution. Sim-
ulating smoke and liquids are the two most common cases, and spe-
cialized approaches have been developed for each.

For smoke animation, Eulerian approaches are common. Here, per-
formance scales with the underlying grid’s resolution and resolv-
ing details at fine scales quickly becomes prohibitive. Fluid up-
res methods address this problem by applying fine-scale turbulence
models atop coarser simulations, generating detailed results without
explicitly simulating at a fine resolution [Kim et al. 2008; Narain
et al. 2008; Schechter and Bridson 2008]. These methods are prac-
tical for art-direction since they guarantee that the coarse behavior
will not change when fine details are added.

In contrast, detailed liquid simulations are still performed at full
resolution, regardless of whether a grid- or particle-based approach
is used, with high-quality particle-based simulators, such as Fluid
Implicit Particle (FLIP) [Zhu and Bridson 2005; Autodesk 2014] or
Smoothed Particle Hydrodynamics (SPH) [Müller et al. 2003; Next
Limit Technologies 2014], having seen rapid, recent adoption.

We address the discrepancy with an “up-res” technique for particle-
based liquid simulations. While an Eulerian closest point turbu-
lence (CPT) method was recently developed for level set-based liq-
uids [Kim et al. 2013], it can only be applied to particle-based data
by converting the data to an Eulerian grid, discarding many of the
simulation’s rich details. We instead add turbulent details directly
to particles, solving the wave equation in a Lagrangian setting. We
first convert a set of input particles from a coarse liquid simulation
into a high-quality, high-density surface point set. We then perform
a wave simulation that adds high-frequency features to the liquid
surface, in the form of bump or displacement maps. We use stan-
dard surfacing to obtain a detailed, high-resolution liquid surface.

To our knowledge, ours is the first comprehensive up-res technique
for particle-based simulations, making the following contributions:



• robust, temporally coherent, meshless surface generation, that
yields smooth, simulation-ready surfaces,

• smooth constraints to ensure that our surface remains spatially
and temporally faithful to the underlying particle set,

• a robust, curvature-based method for initiating surface waves,
• a novel discrete Laplace operator that is provably well-suited for

meshless point representations, in addition to
• an efficient simulation strategy that synthesizes details across

scales onto our high-density surface.

Our method is agnostic to the source of particle data, and can be ap-
plied to FLIP, SPH, and position-based works [Macklin et al. 2014].

2 Previous Work and Overview

Fluid simulation is a well-established area so, in addition to seminal
works [Foster and Metaxas 1996; Stam 1999; Foster and Fedkiw
2001; Müller et al. 2003], we refer readers to Bridson’s book [2008]
and Ihmsen et al.’s STAR [2014] for comprehensive surveys. Here,
we focus primarily on areas most related to our work.

Fluid Up-res. Thuerey et al. [2013] surveys recent fluid up-res
methods which efficiently increase the apparent spatial resolution
of a coarse simulation without altering the low-frequency behavior.
As noted in Section 1, these methods have been most effective in
smoke simulations [Kim et al. 2008; Narain et al. 2008; Schechter
and Bridson 2008; Nielsen et al. 2009; Huang et al. 2011]. Sev-
eral works have also addressed the related problem of synthesizing
frequency-controlled textures on moving surfaces [Yu et al. 2009].

Earlier attempts to apply up-res algorithms to liquids had limited
success, both in Eulerian [Narain et al. 2008] and Lagrangian [Yuan
et al. 2012; Shao et al. 2014] formulations, since they focus on
increasing the resolution of the velocity field. As noted by Kim et
al. [2013], the turbulence on a free surface is only loosely coupled
to the fluid velocity field. Lab experiments show that surface waves
tend to propagate much faster than the velocities of the underlying
fluid would suggest. We thus choose to evolve a high-resolution
simulation over the liquid surface to obtain more convincing results.

While CPT [Kim et al. 2013] works well for Eulerian liquids, no
comprehensive Lagrangian up-res method exists. This is unfortu-
nate, because the ad-hoc methods developed in industry [Budsberg
et al. 2013] show that there is substantial interest in such techniques.

Several works have explored how to guide liquids to meet artis-
tic goals [Shi and Yu 2005; Pan et al. 2013]. Nielsen and Brid-
son [2011] use a low-frequency “guide shape”, extracted from a
coarse FLIP simulation, as the boundary condition for a thin, sec-
ondary, high-resolution simulation applied near the liquid bound-
ary. Our work differs from this approach in two ways: first, we
preserve the entire frequency content of the coarse simulation, in-
cluding important quantities such as the silhouettes. Second, we
add entirely new dynamics to the surface using a wave simulation.
As such, our algorithm can complement such “guide shapes” ap-
proaches, especially since it is applied as a standalone post-process.

Surface Tracking. The importance of surface-only simulations
has become increasingly clear in recent works on explicit surface
tracking [Thuerey et al. 2010], and methods that use them [Yu et al.
2012]. Wojtan et al. [2011] survey these recent developments. In-
stead of explicitly modeling the fluid surface and carefully incor-
porating it into the core simulation, we propose a post-process that
can be applied directly to any coarse particle simulation, remaining
fully decoupled from the simulator that generated the data. Main-
taining a simulation mesh is cumbersome, often requiring external
geometry processing tools. Our meshless method is self-contained,
simplifying implementation. While we create a mesh for rendering,

meshing artifacts do not degrade the stability of the simulation.

Inspired by optimization work for liquid surfacing [Williams 2008;
Bhatacharya et al. 2011], we constrain our final surface to lie in a
band around the input surface. We extend ideas from Eulerian level
sets and meshes to particle-based surfaces. While these works focus
on generating geometry for rendering, we improve their smoothness
and temporal regularity to make them suitable for simulation.

Wave Simulation. Many works consider wave simulations. From
the linear wave equation [Kass and Miller 1990], and related
shallow-water models [Wang et al. 2007], to bi-Laplacian vari-
ants [Yu et al. 2012] and the iWave [Tessendorf 2008]. We use the
linear wave equation and rely on dispersion from stretching induced
by the underlying advection. As with all these previous works, we
manually set an average propagation speed for our surface waves.

On the other hand, wave particles represent surface waves [Yuksel
et al. 2007; Cords 2008] with a dense set of advected points. These
methods have difficulty with the complex, topologically-varying
surfaces that we treat, requiring many more wave particles to rep-
resent the details we achieve with our approach.

Point-Based Simulation. Our work is related to point-based
techniques, but unlike previous works that deal with static point
sets [Zwicker et al. 2002; Alexa et al. 2003] or dynamic surfaces for
rendering [Guennebaud et al. 2008], our input particles represent a
volume where every particle corresponds to a quantity of liquid.
Point-based rendering treats each sample as a (possibly noisy) sur-
face point, and previous point-based simulations [Macdonald et al.
2013; Jeong and Kim 2013] operate on static point sets, and are thus
not appropriate for dynamic particle sets from liquid simulations.

Overview. Figure 2 is a visual overview of our method. Given
an input sequence of particles representing a liquid volume (coarse
particles, dashed circles), we first construct a dense point set along
the liquid interface (fine surface points, solid circles; Sections 3.2 &
3.3). We smooth and regularize these points to support point-based
simulation (Section 3.4). Using per-point normals and displace-
ment values we call wave values (green lines; Section 4.2), we per-
form a high-resolution wave simulation (green curve; Section 4.3)
over the surface. We output the final detailed surface as a bump or
height map over the high-density point set, or as a displaced point
set. These points can be splatted directly or tessellated for render-
ing, which is easy given our regular surface point distribution.

3 Surface Construction and Maintenance

We construct a dense point set that represents the liquid’s surface,
and maintain a level of smoothness and regularity necessary for
point-based wave simulation. We describe our novel smooth band
constraint that controls the surface’s behavior and ensures coher-
ence between the surface points and underlying simulation. Unlike
level set or mesh-based surface tracking [Osher and Fedkiw 2003;
Wojtan et al. 2011], our fluid surface is represented exclusively by
oriented points i, each with a position xi and normal ni.

3.1 Neighborhood Relationships

To ensure that our surface points behave as a unified manifold, we
draw upon work in meshless simulation (e.g., [Ihmsen et al. 2014]),
taking advantage of the neighborhood relationships between point
pairs. Our high-resolution surface points xi, and coarse input parti-
cles Xi, will affect each other across spatial scales. Specifically:

• a coarse-scale length λc, obtained from the coarse particle simu-
lator (e.g., the grid cell size in a FLIP solver), and
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Figure 2: An overview of the different steps of our algorithm, performed for each frame of coarse input data. The fine surface points (solid
circles) are evolved on the surface of the input coarse particles (dashed circles). The overview in Section 2 details each stage of this diagram.

• a fine-scale length λf, a user parameter controlling the separation
between points of the detail-enhanced surface.

We use λc for operations related to the underlying fluid, such as sur-
face advection (Section 3.2) and curvature evaluation (Section 4.1),
and λf for intrinsic surface operations, including point distribution
regularization (Section 3.4) and wave evolution (Section 4.3). We
use isotropic kernels to weight the effect of particles on their neigh-
bors. Unless specified otherwise, we use a simple triangular kernel:

Kδ
i (xj) = 1−||xi − xj ||

/
δ, if ||xi−xj || < δ ; 0, otherwise , (1)

where δ is the local neighborhood radius. We normalize the weight-
ing kernel according to the local density around a point j,

ρδj =
∑
k∈F

Kδ
j (xk) , (2)

where F denotes the set of all surface points. This local normaliza-
tion eliminates any bias introduced by potential non-uniformities
across local point densities, and so the local weight is wδi (xj) =
Kδ
i (xj)/ρδj . This density normalization is especially important at

the finest scale, where point distribution variance is highest.

We also normalize the weighting so the contributions sum to unity,
so our final weight of point j for point i is

W δ
i (xj) = wδi (xj)

/∑
k∈F

wδi (xk) . (3)

In practice, we only sum over particles in finite neighborhoods due
to the local support ofK. The weights also apply naturally to coarse
particles by exchanging F for C, the set of all coarse particles.

3.2 Surface Initialization and Advection

We create the initial set of fine-scale surface points in two steps.
We first create an initial point set by centering spheres of radius
λc around each coarse particle, sampling points uniformly on these
spheres, and only retaining points that do not fall inside any other
sphere’s volume. This process results in a very rough, non-smooth,
fine-scale surface point distribution that we regularize in a second
step (see Section 3.4). For any subsequent frame n, fine surface
points xni are obtained by simply advecting points xn−1

i from the
previous frame. The updated surface point position is a weighted
sum of the displacements of neighboring coarse particles X,

xni ← xn−1
i +

∑
k∈C

W 2λc
i (Xk) (Xnk − Xn−1

k ). (4)

We can modify the neighborhood size used for advection according
to how closely we want fine-scale surface points to track coarse
particles; in practice, a neighborhood radius of 2λc yields smoothly
advected fine-scale surfaces. We use this value for all of our results.

After advection, fine-scale points may no longer be located in the
vicinity of the coarse particles, so the fine-scale surface behavior
may deviate from the dynamics of the underlying coarse simulation.

Maintaining a correspondence between the input (coarse) and out-
put (fine) fluid behavior is essential for predictable artistic control,
so we next devise a surface constraint that imposes this guarantee.

3.3 Surface Constraints

A fundamental component of our approach is the generation of a
smooth, temporally coherent, high-resolution output surface that
does not need to explicitly track manifold connectivity. To accom-
plish this, we devise an implicit representation that constrains the
position of the fine-scale surface points.

Our method is motivated by Williams [2008]: First, two concentric
spheres of radius r andR are centered at each coarse particle, where
R is the larger of the two. During surface evolution, the fine-scale
surface points are constrained to remain in the volume between the
union of all outer spheres and the union of all inner spheres. As
depicted in Figure 3, this volume region forms “bands” around the
coarse particles, delimiting the region where the advected fine scale
surface is allowed to exist. This constrains surface points to regions
not too far from, nor too close to, the existing coarse particles.

The r and R parameters affect the final output appearance. Small
values create surfaces that more closely resemble the coarse simu-
lation, but increase bumpiness. Large values can create surfaces
that deviate significantly from the coarse simulation and exhibit
over-smoothing. While they can be manually adjusted, we found
that R = λc results in a reasonably smooth surface relative to the
underlying simulation and r=R/2 leaves sufficient space for fine
particles to evolve without closely approaching the coarse particles.

Williams uses the spheres to constrain a thin-plate energy optimiza-
tion to represent the surface; it is unclear how this can apply to
meshless settings without costly intermediate meshing. Moreover,
projecting onto the surface formed by the union of spheres is dif-
ficult due to discontinuities in the first derivatives, and an orthogo-
nal projection creates a discontinuous surfaces unsuitable for wave
simulation (Section 4.3).

To solve this problem, we instead project onto an implicit metaball-
like formulation [Blinn 1982] that leads to smooth projection con-
straints better suited to the volumetric region between the inner-
and outer-sphere unions. The efficacy of this strategy is shown in
Figure 3. This novel smooth band constraint is constructed from an
implicit function φ(y) = g(f(y)) for an arbitrary point y, where f
is a standard metaball function and g is a rescaling function. There
are many possible choices for f , but we obtained good results with

f(y) =
∑
i∈C

fi(y)/ψi with fi(y) = exp
(
−a|y− Xi|2

)
, (5)

where ψi is the metaball density of the i-th coarse particle and a is a
falloff parameter discussed below. The metaball density ψi differs
from the local density ρδi in Equation 2, and is evaluated as

ψi =
∑
j∈C

D(||xi−xj ||) with D(z) = exp
(
−2 (z/λc)

2) . (6)



Figure 3: Williams’ constraint circles (top left, bottom dashed cir-
cles) and our smooth band constraint (top right, bottom color gra-
dient). Our constaints are smoother and define values in the interior
that vary linearly in space, permitting simpler projections.

Using different kernels for fi(y) and D(z) provides the flexibility
needed to design sufficient constraints. As in Equations 1 to 3, we
sum over local surface point neighborhoods in Equations 5 and 6
due to the kernel’s fall-off. Unlike before, truncation does introduce
error, but only a negligible amount at a neighborhood radius of 2R.

Finally, we impose an almost linear variation in φ, from 0 at the in-
ner sphere to 1 at the outer sphere, as illustrated in Figure 3. We use
the following scaling function, which is exact for a single particle:

g(z) =
(√
− ln(z)/a− r

)/
(R− r) . (7)

We solve for a value of a that, given two coarse particle centers less
than µ = 3/2 × R units apart, will unify the inner sphere union
constraint of the two particles as if their contribution resulted from
the same component of the fluid surface:

a = ln (2/[1 +D(µ)])
/(

(µ/2)2 − r2
)
. (8)

Figure 3 (bottom middle) is the case with particle centers exactly µ
units apart. All our results use this value of a, and its associated µ.

Since our band constraint function φ is smooth, we can use its nor-
malized gradient g to determine a reasonable projection direction
when a particle exits the constraint region. Additionally, as the
function is approximately linear with respect to the distance from
the inner constraint, we can easily compute this projection as

xi ←


xi − (R− r) · φ(xi) · gi if φ(xi) < 0

xi − (R− r) · (φ(xi)− 1) · gi if φ(xi) > 1

xi otherwise .
(9)

This introduces some approximation error, so a surface point may
still lie outside the constraint region after projection. However, at
this stage, it keeps points sufficiently close to the constraint region.

3.4 Surface Smoothing and Regularization

We now have a high-density set of surface points, but their distri-
bution must be improved (i.e. regularized) before they are suitable
for surface wave simulation. This regularization proceeds in four
stages: normal computation, normal regularization, tangent regu-
larization, and point insertion and deletion.

Normal Computation: A smooth, artifact-free normal field is es-
sential for the maintenance of our surface structures. We compute
the normal at each fine-scale surface point using an averaged least-
squares planar fit to the local gradient of φ (see Algorithm 1).

Figure 4: Left: Surface regularization shifts points along their nor-
mal towards circles consistent with the points’ positions and nor-
mals, smoothing the surface. Right: A surface point added to a low
density region (green) and deleted from a high density region (red).

Regularization Along the Normal: To improve the smoothness
of our surface, we displace each surface point along its newly com-
puted normal direction. Given a point i and one of its neighbors j,
we consider the plane Πi,j spanned by vectors ni and (xj−xi). We
find the unique circle in this plane that is equidistant to both points
and orthogonal to both points’ normals (see Figure 4). The projec-
tion of point i onto this circle is averaged over all its neighbors, and
the point is then displaced along its averaged projected position.

This averaging is done in a neighborhood of radius λc, which
pushes the points towards a surface that is consistent with the com-
puted normal field. Since the normals vary smoothly, the resulting
surface is also smooth. Denoting n?j the normalized projection of
nj onto Πi,j , the displacement of point i onto the circle is given by

proji,j = ni
(ni + n?j ) · (xi − xj)

2 ni · (ni + n?j )
, (10)

so this regularization step is computed as

xi ← xi +
∑
j∈F

Wλc
i (xj) proji,j . (11)

Regularization Along the Tangents: Similar to previous works,
we insert repulsion forces [Turk 1991] to improve the distribution of
the surface points by driving them along their tangent directions. At
each surface point, we compute the weighted direction away from
its neighbors, and displace it in this direction. This averaging is
performed in a local neighborhood λf around the point. Explicitly,
this regularization step is computed at each surface point as

xi ← xi + 0.5λf
∑
j∈F

W
λf
i (xj) TNi(xj − xi) , (12)

where TNi projects onto the tangent plane of point i and then nor-
malizes the result, and the 0.5 factor prevents two points from mov-
ing to the same location.

Insertion and Deletion: The last regularization step adds and
deletes surface points according to changes in the underlying sim-
ulation. Points are deleted when the local point density is too high.
We detect this by looking for pairs of points that are closer than
3/4λf , in which case the most recently created point is deleted.
Similarly, surface points are added when the local point density is

1 forall the surface points i do
2 ni ← gi;
3 compute tangent t1i and bi-tangent t2i , orthonormal to ni;
4 least square plane fitting in λc to the frame [t1i , t2i , ni];
5 ni ← normal of plane;
6 forall the surface points i do
7 ni ← averaged normal in neighborhood λc;
8 ni ← normalize (ni);

Algorithm 1: Steps for computing the normals.
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Figure 5: Our wave seeding strategy. A wave moving from the left side of the simulation reaches the highlight region of the surface (left);
seeding has yet to occur here, so the displayed (di, green) and internal (hi, red) waves match. The underlying surface has high curvature at
the center surface point (middle). We increase the oscillator amplitude (ai) here from 0 to ∆a, and compute a wave seeding value (si) from
a cosine oscillator with amplitude ai. We evolve the wave simulation and subtract the seeding values from the computed wave to obtain the
new displaced wave value (right). The dashed green line shows what the displayed wave would have been if no wave seeding had occurred.

too low, by Poisson disk sampling [Cook 1986]. For each point,
we recompute the tangential direction as it was computed in the
previous tangent regularization step. This generally points in the
direction of lowest density, so we place a sphere of radius λf at a
distance λf in this direction and search for neighboring points that
fall inside the sphere. If none are found, the point density is too low
and we create a point at the displaced sphere’s center (Figure 4).

The three regularization steps are global operations that influence
the entire surface. However, as they each consist of spatially local
computations, we apply them several times to each animation frame
until convergence. We used 30 iterations for the first frame and be-
tween 3 and 10 iterations per subsequent frame in all of our simu-
lations. The number of iterations used for each scene is shown in
Table 1. The accompanying video shows the uniform point density
maintained by our surface operations on a deforming fluid surface.

3.5 Interactions with Obstacles

We have so far focused on the management of surface points in un-
obstructed flow, but special care must be taken when surface points
approach obstacles. The regularization in Section 3.4 works best
if the point distribution around each surface point is approximately
uniform, which is not the case near obstacle boundaries.

Motivated by ghost and boundary [Schechter and Bridson 2012;
Akinci et al. 2012] particles in SPH, we add ghost points for each
surface point located close to an obstacle by reflecting the neighbor-
ing points of the current point w.r.t. the obstacle. We then simply
apply the regularization steps to both “real” and ghost point sets.

4 Turbulence Creation and Evolution

Section 3 detailed the creation of high-density point sets that repre-
sent the underlying coarse fluid simulation surface. We can now add
turbulent details atop this surface, simulating waves on its points.

4.1 Curvature Evaluation

Surface wave details should appear in areas of high activity, e.g.,
merging or separating regions. Mean curvature is a good indicator
of these regions [Kim et al. 2013], as high curvature tends to denote
under-resolved areas in the base simulation. Second-order neigh-
borhood fitting is commonly used to compute curvature on point
surfaces: this works well for smooth surfaces [Wang et al. 2013],
but we deal with turbulent surfaces where quadratic fits can gener-
ate extreme and noisy curvatures, leading to instabilities over time.

We instead propose a new, robust alternative for evaluating curva-
ture on point clouds. The curvature ci at point i is defined as the
signed distance of its neighbors to its tangent plane, easily obtained
from the normal computed at each point (Section 3.4), which gives:

ci =
∑
j∈F

Wλc
i (xj) (ni · (xi − xj)) . (13)

While not identical to mean curvature, this measure is a very re-
liable criterion for wave generation. Moreover, thresholding any
such criterion in a meaningful way across discretizations is very
important. We derive practical thresholds {cmin, cmax}, evaluating
Equation 13 at two extremal scenarios: single drops and thin sheets.
For a surface of infinite point density at distance λc from the coarse
particles, our measure evaluates to cmax = 0.15λc for a single drop
and cmin ≈ 0.077λc for a thin sheet. These thresholds (see Ap-
pendix A for derivations) are useful for parametrizing simulations.

4.2 Turbulence Creation

The simplest way to add turbulence to a surface is to add it di-
rectly to the wave heights. This can work well for grid-based meth-
ods [Kim et al. 2013] where surface curvature varies smoothly with
respect to grid size, but particle-based methods often contain large,
abrupt curvature variations. For instance, when a single particle
falls onto a flat water surface, a discontinuous wave seeding causes
an abrupt visual change in height. Curvature is always high on iso-
lated droplets, causing uniform wave seeding over the droplet and
unrealistic (non mass conserving) pulsing (see supplemental video).

A simple solution used in mesh-based simulations [Yu et al. 2012]
is to turn off the wave seeding in regions of high curvature. This
reduces artifacts from curvature discrepancies, but still produces
abrupt changes in regions of near-maximum curvature. Moreover,
it removes some of the waves caused by fine splashes characteristic
of particle-based fluids, and limits the amount of new added details.

We propose a different approach, outlined in Algorithm 2 and il-
lustrated in Figure 5. In lines 2 and 3, we throttle seeding in high

Data:
ci : surface curvature c : wave speed

cmin,max: curvature thresholds fb : base seeding frequency
ai : oscillator amplitude fo : # of frequency octaves
∆a : oscillator amplitude step size W : max. wave amplitude
A : max. oscillator amplitude F : max. wave frequency
hi : internal wave height t : simulation time
vi : internal wave velocity ∆hi: laplacian
di : displayed wave height si : seed value

1 forall the surface points i do
2 atmp ← 2 smoothstep(|ci|, cmin, cmax)− 1;
3 ai ← clamp(ai + atmp ∆a, 0, A);

4 si ← 0; f ← fb; a← ai;
5 for λ = 1 .. fo do
6 si ← si + ai cos(t c f); f ← 2 f ; a← a/2;
7 hi ← di + si;
8 forall the surface points i do
9 vi ← vi + c2 ∆t∆hi; hi ← hi + ∆t vi; di ← hi − si;

10 di ← clamp(di,−W,W ); vi ← clamp(vi,−W F,W F );

Algorithm 2: Pseudocode for wave evolution and seeding.



Figure 6: Wave propagation with Laplace-Beltrami (left) and our
flat Laplace operator (right). The approximation error is negligi-
ble: no observable differences even after 1000 simulation steps.

curvature regions based on the curvature thresholds of Section 4.1.
We seed with time-varying cosine oscillators (line 6), but these os-
cillations are never directly visualized. Instead, we apply the wave
equation to them and only new waves that have propagated out from
the cosine oscillations are visualized. This avoids double accumu-
lation of wave values in regions of high curvature: once from their
own oscillator and once from the waves generated by neighboring
oscillators. This also causes waves to appear at the boundary of the
seeding regions: for an isolated droplet, the seeding region has no
boundary and, as no wave is seeded, the pulsing artifact is removed.

Our seeding is easy to implement: in addition to the wave value hi
used to solve the wave equation, we store a displayed wave value
di. We store cosine oscillators separately in seed values si. At each
step, we first add seed values to the displayed wave values to obtain
the wave values. We perform wave simulation on hi and subtract
seed values from hi to recover di. The di thus only contain new
features propagated out from the seed values, in addition to features
that have evolved from previous timesteps. We never visualize hi.

Finally, inspired by smoke up-res methods [Kim et al. 2008], our
approach seeds features across multiple frequency octaves. To en-
able further control, the base seeding frequency fb of the cosine
oscillators, and the number of additional octaves fo, are exposed as
user parameters. The accompanying video shows a comparison of
our seeding method versus more direct approaches.

4.3 Turbulence Evolution

We evolve waves on the surface using the standard wave equation,

∂2
t h = c∆h , (14)

where c is the wave speed and ∆ is the Laplace-Beltrami operator.
We solve this equation explicitly with a symplectic Euler scheme
that also requires the wave velocity vi to be stored at each surface
point. The linear wave equation, due to its dispersive nature, only
approximates capillary surface wave behavior. The wave speed c
must thus be selected empirically, for instance by estimating the de-
sired traveled distance of waves between two given frames. Despite
this, the linear wave model is widely used [Thuerey et al. 2010;
Chentanez and Müller 2010] and yields convincing results. Similar
to these works, we add a small amount of diffusion to approximate
wave dissipation, but this is not required to maintain stability.

Some previous works solve differential equations involving the
Laplace-Beltrami operator on point surfaces [Liang et al. 2012;
Liang and Zhao 2013], requiring the evaluation of surface curva-
ture as well as second derivatives of the embedded function. In our
case, the curvature of the surface is small compared to the length
λf at which the wave equation operates, so we instead approxi-
mate the Laplace-Beltrami operator in Equation 14 with a simpler,
flat Laplace operator. We avoid the metric tensor computations of
Laplace-Beltrami, which are both costly and difficult to robustly
evaluate on point surfaces. Figure 6 compares our flat Laplace op-
erator to Laplace-Beltrami, showing results that are indistinguish-

Figure 7: Comparing the Laplacian computed with a least squares
fit to our new discrete operator. When generating waves at a scale
near the point density limit, the least squares fit fails to isolate the
desired wavelength and becomes unstable (i.e., undesirable small
scale waves, left). At the same wave frequency, our discrete Laplace
operator correctly treats the wave (middle) and even remains stable
when pushed to the Nyquist limit of the discretization (right).

able even after 1000 simulation steps. Here, the approximation was
6 times faster to compute and gave a maximum height difference of
only 1.4%. Appendix B further validates our approximation.

A common method [Liang and Zhao 2013] for computing the flat
Laplace operator on a point surface is to use the derivatives of a lo-
cal quadratic least squares approximation of the function. Although
this works with densely sampled surfaces, we generate waves at
scales that can be of the same order as the distance between points.
Only a few points can then be used for the quadratic approxima-
tion, which is imprecise and leads to instabilities over time. Our
supplemental video and Figure 7 illustrate such instabilities.

We instead compute the Laplace operator by using the tangent
plane, which was previously obtained during surface normal com-
putation (section 3.4). By projecting nearby points onto the tangent
plane, the displacement defined by the wave values hi becomes a
function defined on the tangent plane. In this coordinate system,
an affine approximation P of the function is first computed using
standard least-square minimization. Subtracting the values of P on
each neighboring point eliminates the zeroth- and first-order deriva-
tives of the function, so the Laplacian can be evaluated directly as
a weighted sum of discrete directional second-order derivatives:

∆hi =
∑
j∈F

W
2λf
i (xj)

4 ((hj − P (xj))− (hi − P (xi)))
||xi − xj ||2

. (15)

We have found that a neighborhood radius size of 2λf works well.
Appendix B shows how our operator approximates the Laplacian.
To our knowledge, we are the first to introduce this discrete operator
for computing the Laplacian on a meshless set of points. Our sup-
plemental video and Figure 7 show that it matches computations us-
ing the usual quadratic least squares approximation. Furthermore,
since it uses an affine least squares fit instead of a quadratic fit,
our operator remains stable even for waves at the highest frequency
representable by the surface points. As such, it is particularly well
suited to our meshless point representations, and we observed it was
2 times faster to evaluate than the quadratic least squares Laplacian.

We inject ghost points when surface points approach obstacles
(Section 3.5) and also use these ghost points during wave computa-
tions, where we simply copy the wave value on a ghost point from
its original “real” surface point. This gives Neumann boundary con-
ditions on the obstacles and yields the expected wave reflections.

5 Results and Discussion

Up-resed Simulations. We apply our method to coarse simu-
lations generated using Houdini 13’s FLIP solver. We apply our
method to a large 12.5 million particles input simulation (Figures 1
and 12). Even at this high resolution, we enhance the visual qual-
ity by generating waves on a 500K surface point representation.



Scene # particles # surface points Total (sec/frame) Advection Regularization Curvature Laplacian Wave Disk I/O
Dam Break 12500k 500k 85.4 8.6% 53.1% (10) 5.4% 2.9% 0.3% 2.0%

River 400k 280k 42.2 14.7% 48.7% (3) 9.9% 10.8% 0.8% 15.1%
Double Drop 1400k 350k 25.9 8.1% 57.0% (5) 5.4% 7.9% 1.0% 4.9%

390k 17k 1.5 15.0% 49.9% (5) 6.7% 4.1% 1.1% 4.6%
Stir 390k 66k 5.4 10.8% 58.1% (5) 7.5% 6.0% 0.8% 4.8%

390k 145k 15.2 8.7% 61.0% (5) 7.0% 9.8% 0.6% 3.9%
Table 1: Timings for the various steps of our algorithm. All performance statistics were computed on an Intel i7 quad core running at 3.4
GHz with 32GB of RAM. In the regularization column, the parenthesis indicate the number of regularization steps used per frame.

Figure 8: We upres an input simulation (left, 1.4 million particles) with 400K surface points (middle), augmenting details over the bulk of
the surface. We can also combine our results with other methods (i.e., [Ihmsen et al. 2012]) to further increase the visual fidelity (right).

Our complete post-process requires 85.4s/frame, compared to the
241s/frame used for the input simulation. This illustrates our scala-
bility beyond resolutions achievable with regular fluid solvers.

Figure 9 features a complex moving obstacle [Lait 2011], and
demonstrates various levels of up-resing: from a 390K input coarse
particle simulation, we generate 17K, 66K and 145K surface points.
Each successive point set is able to resolve higher frequency details
corresponding to successively higher visual fidelity. In contrast to
previous work [Kim et al. 2013], our method does not require any
additional information apart from the points used to represent the
final surface to simulate a similar amount of wave detail.

Figure 11 shows a complex, turbulent riverbed. Even at 400K par-
ticles, the coarse simulation cannot capture the intense turbulence
that characterizes a river’s flow. Our up-resed output conveys this
imagery, adding surface waves both where the water collides with
rocks, as well as in stationary eddies behind these same obstacles.

Comparison with Full Resolution FLIP. Figure 10 compares
the results of a high-resolution 4 million particles FLIP simulation
with our method applied to a low resolution simulation compris-
ing just 2500 particles. The 4 million particles are able to resolve
certain fine structures, such as the splash, however, the final sur-
face only contains rough, low frequency waves. In comparison, our
method crisply resolves waves with many more frequencies. The
4 million particles scene requires 142s/frame while ours uses only
4.74s/frame, corresponding to a 30× speedup. Obtaining compa-
rable waves with only a FLIP simulation would require even more
particles, increasing our speedup for an equal-quality wave motion.

Implementation and Performance. Our method relies heavily
on surface point lookups in small neighborhoods, so it is crucial
to use an acceleration structure to store the surface point data. We
used a hashing structure [Teschner et al. 2003] to improve the effi-
ciency of these operations, yielding a speedup in the range of 20×
for 27K surface points to 200× for 290K surface points compared
to brute-force lookups. Most of the computations are performed on
individual surface points, so trivial parallelizations using OpenMP
further accelerated these operations by another 4 to 8×. Full com-
putation breakdowns for our four scenes are provided in Table 1.

Limitations. Since we are designing an upres technique, we de-
liberately leave the coarse dynamics of the simulation untouched.
Consequently, we do not reduce the size of the smallest underlying
simulation structures. While this does not affect the majority of a
simulation, fine isolated structures (i.e., droplets) are limited by the
size of the input simulation. As mentioned in Section 4.2, seeding
waves on isolated particles leads to visible mass loss and undesir-
able behavior, so we leave them untouched. However, our method
remains compatible with techniques that directly address this prob-
lem, such as Ihmsen et al.’s approach [2012] (see Figure 8).

The timings in Table 1 show the majority of our computation is
spent in surface regularization and neighborhood queries. This is
as expected since the λc scale used for normal evaluation and regu-
larization (Section 3.4), as well as for curvature computations (Sec-
tion 4.1), does not decrease as the number of surface points in-
creases. The number of neighbors thus grows quadratically with
the total number of surface points. However, there are redundan-
cies in these queries, since they all relate to the same underlying
coarse simulation regardless of the final point count. A hierarchical
method designed to instead select a constant-sized subset of repre-
sentative neighbors for use in these queries would reduce the com-
plexity of the regularization steps to that of all other steps. Design-
ing such a selection method is a natural direction for future work.

6 Conclusion

We have presented a fully Lagrangian method for enhancing a
particle-based liquid simulation using surface waves. This was

Figure 10: Comparing a very high resolution (left; 4 million parti-
cles) and low resolution FLIP simulation up-resed with our method
(right; 2500 coarse particles). The high resolution simulation only
contains shallow, low frequency surface waves. Our result is up-
resed to 15500 surface points, yielding much crisper surface waves.



Figure 9: We upres a 380K FLIP simulation (left) with 17K (middle, top), 66K (middle, bottom), and 145K (right) surface points.

Figure 11: We upres an input 400K particle FLIP simulation (middle bottom half; zoom-ins bottom) with 280K surface points (middle top
half; zoom-ins top). Our surface waves interact realistically with the turbulent flow over the rocks and the resulting stationary eddies.

made possible using a combination of several novel techniques, in-
cluding a robust method for point surface creation and maintenance
and a stable discrete Laplace operator, both of which can apply
more broadly in settings involving surface operations on animated
point sets. We also proposed a novel wave injection strategy based
on bands of oscillators, and we have demonstrated that our method
can efficiently process coarse input simulations (of both low- and
high-resolutions) into highly detailed and turbulent liquid surfaces.

In the future, we plan to explore more complex and expressive
waves models, art-directable editing controls for the fine-scale de-
tails, closer coupling to secondary particle systems for drops and
foam effects, and the application of our method to other types of
secondary surface simulations for Lagrangian data.

Appendix A: Threshold Computations

To evaluate our curvature measure on a surface of infinite point
density, we consider the integral form of (13) as |S| → ∞. Here,
surface points all have equal density ρ, so we can replace W with
K. We omit the neighborhood size λc from the kernel notation for
brevity. We work in a local frame with the surface point of interest
at (0, λc, 0) with normal (0, 1, 0) and xz-tangent plane, yielding

ci =

∫
x∈S

K((0, λc, 0)− x · ey) (λc − y) dS

/∫
x∈S

K((0, λc, 0)− x) dS .

For the case of a single drop, we consider the surface {x2 + y2 +
z2 = λ2

c}. Solving the integral analytically in spherical coordinates

p(θ, φ) = (λc sin θ cosφ, λc cos θ, λc sin θ sinφ) yields

ci =

∫ 2π

φ=0

∫ π/3

θ=0

λc (1− cos(θ))K((0, λc, 0)− p(θ, φ)) dθ dφ∫ 2π

φ=0

∫ π/3

θ=0

K((0, λc, 0)− p(θ, φ)) dθ dφ

=
3λc

20
.

For the case of a thin sheet, we consider the surface

({y ≥ 0} ∩ {x2
+ y

2
= λ

2
c}) ∪ ({y ≤ 0} ∩ {|z| = λc}).

SinceK is non-zero only in the cylindrical part of the thin sheet, we
can use cylindrical coordinates p(x, θ) = (x, λc cos θ, λc sin θ):

ci =

∫ λc

x=−λc

∫ π/3

θ=−π/3
λc (1− cos(θ))K((0, λc, 0)− p(x, θ))λc dx dθ∫ λc

x=−λc

∫ π/3

θ=−π/3
K((0, λc, 0)− p(x, θ))λc dx dθ

,

which evaluates numerically to 0.0771413λc (to double precision).

Appendix B: Laplace-Beltrami Approximation

We justify our Laplace approximation and detail computations used
for Figures 6 and 7.

Flat Laplace Computation

First, we show that (15) indeed approximates the Laplace operator
at surface point i. We orient the coordinate system to have origin
at point i and tangent xy-plane. We express W

2λf
i recentered at



Figure 12: Two close-ups of the Dam Break scene (Figure 1). In each pair, the left image shows the input simulation and the right image
shows our upresed output surface. Even with 12M input particles, the input simulation fails to resolve finer surface details, so our method is
still capable of significantly increasing the visual quality of the result even with high-resolution inputs.

the origin as W , and override F as the neighboring points in those
coordinates. We can rewrite the discrete operator as∑

x∈F
4W (x)((h(x)− P (x))− (h(0)− P (0))

/
||x||2

=
∑
x∈F

4W (x)(h(x)− P (0) +∇P (0) · x− h(0) + P (0))
/
||x||2

=
∑
i∈F

4W (x)(h(x)−∇h(0) +O(λ
2
f ) · x− h(0))

/
||x||2 (16)

=
∑
x∈F

(
4W (x)(h(x)−∇h(0) · x− h(0))

/
||x||2

)
+O(λf ) (17)

where the error term in (16) results from the superconvergence
demonstrated in Appendix A in Liang’s work [Liang 2013], and is
possible due to the approximate point distribution symmetry main-
tained by our method (Section 3.4). As the point density approaches
infinity, the operator converges to∫∫

D
4K(x)(h(x)−∇h(0) · x− h(0))

/
||x||2 dx +O(λf ) (18)

where D is the disk x2 + y2 ≤ (2λf )2 and K is the kernel K
2λf
i

recentered at the origin and normalized to 1. Again, note that (18) is
only correct if the point density of the surface is uniform, which we
maintain in our method. Using a Taylor expansion of h in the direc-
tion x, we have h(x) = h(0)+||x||h′x(0)+ 1

2
||x||2h′′x (0)+O(||x||3),

where h′x and h′′x are the first and second directional derivatives of
h w.r.t. x. Substituting the Taylor expansion into (18), we arrive at

=

∫∫
D

4K(x)

(
1

2
||x||2h′′x (0) +O(||x||3)

)/
||x||2 dx +O(λf )

=

∫∫
D

2K(x)h
′′
x (0) dx +O(λf ). (19)

The error term disappears since λf approaches zero as the point
density increases. We split (19), effect a clockwise rotation of
90deg, and use the symmetry of K to obtain

=

∫∫
D
K(x)h

′′
x (0) dx +

∫∫
D
K(x)h

′′
x (0) dx (20)

≈
∫∫
D
K(x, y)h

′′
(x,y)(0) dx +

∫∫
D
K(−y, x)︸ ︷︷ ︸
=K(x,y)

h
′′
(−y,x)(0) dx (21)

=

∫∫
D
K(x, y)

(
h
′′
(x,y)(0) + h

′′
(−y,x)(0)

)
dx (22)

=

∫∫
D
K(x, y)∆h(0) dx = ∆h(0)

∫∫
D
K(x, y) dx = ∆h(0) (23)

where the equality between (22) and the left most equation in (23)
leverages the invariance of the Laplacian under rigid deformation.

Flat Surface Approximation

We can now justify our claim in Section 4.3 that locally approxi-
mating the curved surface with a flat surface yields negligible er-

rors in the evaluation of differential quantities. We parameterize a
quadratic surface q about a given surface point as

q(x, y) = q00 + q10x+ q01y + q20x
2 + q11xy + q02y

2. (24)
Following [Liang and Zhao 2013], we compute a least square
quadratic approximation centered at the surface point for both the
surface (f ) and the wave function (h) to approximate the Laplace-
Beltrami operator at this point. The full expression for the operator
can be derived as

2
(

1 + f4
01 + 2f2

01 + f2
10 + f2

10f
2
01

)
h02

+2
(

1 + f4
10 + 2f2

10 + f2
01 + f2

10f
2
01

)
h20

+

 f20f
3
01 + 3f3

01f02 + 3f01f02

+2f2
10f01f02 + f01f20 + 2f2

10f01f20

+2f10f11 + f3
10f11 + 3f10f

2
01f11

h01

+

 f02f
3
10 + 3f3

10f20 + 3f10f20

+2f10f
2
01f20 + f10f02 + 2f10f

2
01f02

+2f01f11 + f3
01f11 + 3f2

10f01f11

h10

+
(

2f10f01 + 2f3
10f01 + 2f10f

3
01

)
h11


1 + f2

01 + f2
10

(25)

Notice that if we align our local coordinate system with the sur-
face, i.e., f10 = f01 = 0, (25) simplifies to 2h20 + 2h02, which is
the flat Laplace operator. While our normal computation in Algo-
rithm 1 attempts to get as close as possible to this perfect alignment,
numerical errors will be present. Still, Figure 6 shows that f10 and
f01 are small enough to permit our approximation with a flat Lapla-
cian. Moreover, by only keeping the first-order terms of (25), i.e.,
ignoring terms that depend at least quadratically on f10 and f01, we
arrive at the first-order approximation

2h02 + 2h20+
(

3f01f02 + f01f20 + 2f10f11

)
h01

+
(

3f10f20 + f10f02 + 2f01f11

)
h10.

(26)

We apply this expression in Figure 6 when computing the Laplace-
Beltrami operator, where (2h02 +2h20) is evaluated using (15) and
the wave function derivatives h10 and h01 are evaluated using the
affine approximation P already computed in (15).
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MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In ACM SIG-
GRAPH/Eurographics Symp. on Computer animation, 154–159.

NARAIN, R., SEWALL, J., CARLSON, M., AND LIN, M. C. 2008.
Fast animation of turbulence using energy transport and procedu-
ral synthesis. ACM Trans. Graph. 27 (December), 166:1–166:8.

NEXT LIMIT TECHNOLOGIES, 2014. RealFlow. http://www.
realflow.com/.

NIELSEN, M. B., AND BRIDSON, R. 2011. Guide shapes for high
resolution naturalistic liquid simulation. ACM Trans. Graph..

NIELSEN, M. B., CHRISTENSEN, B. B., ZAFAR, N. B., ROBLE,
D., AND MUSETH, K. 2009. Guiding of smoke animations
through variational coupling of simulations at different resolu-
tions. In ACM SIGGRAPH/Eurographics Symp. on Comp. Anim.

OSHER, S., AND FEDKIW, R. 2003. The Level Set Method and
Dynamic Implicit Surfaces. Springer-Verlag, New York.

PAN, Z., HUANG, J., TONG, Y., ZHENG, C., AND BAO, H. 2013.
Interactive localized liquid motion editing. ACM Trans. Graph..

SCHECHTER, H., AND BRIDSON, R. 2008. Evolving
sub-grid turbulence for smoke animation. In ACM SIG-
GRAPH/Eurographics Symp. on Computer Animation, 1–7.

SCHECHTER, H., AND BRIDSON, R. 2012. Ghost sph for animat-
ing water. ACM Trans. Graph. 31, 4 (July), 61:1–61:8.

SHAO, X., ZHOU, Z., ZHANG, J., AND WU, W. 2014. Real-
istic and stable simulation of turbulent details behind objects in
smoothed-particle hydrodynamics fluids. Computer Animation
and Virtual Worlds.

SHI, L., AND YU, Y. 2005. Taming liquids for rapidly changing
targets. ACM SIGGRAPH/Eurographics Symp. on Comp. Anim..

STAM, J. 1999. Stable fluids. In SIGGRAPH 1999, 121–128.
TESCHNER, M., HEIDELBERGER, B., MUELLER, M., POMER-

ANETS, D., AND GROSS, M. 2003. Optimized spatial hashing
for collision detection of deformable objects. In Proceedings of
Vision, Modeling, Visualization, 47–54.

TESSENDORF, J., 2008. Vertical derivative math for iwave.
THUEREY, N., WOJTAN, C., GROSS, M., AND TURK, G. 2010.

A Multiscale Approach to Mesh-based Surface Tension Flows.
ACM Transactions on Graphics (SIGGRAPH) 29 (4) (July), 10.

THUEREY, N., KIM, T., AND PFAFF, T. 2013. Turbulent fluids. In
ACM SIGGRAPH 2013 Courses, 6:1–6:1.

TURK, G. 1991. Generating textures on arbitrary surfaces using
reaction-diffusion. In Proceedings of SIGGRAPH, 289–298.

WANG, H., MILLER, G., AND TURK, G. 2007. Solving
general shallow wave equations on surfaces. In ACM SIG-
GRAPH/Eurographics Symp. on Comp. Anim.

WANG, R., YANG, Z., LIU, L., AND CHEN, Q. 2013. Discretizing
laplace–beltrami operator from differential quantities. Commu-
nications in Mathematics and Statistics 1, 3, 331–350.

WILLIAMS, B. W. 2008. Fluid surface reconstruction from parti-
cles. M.S. Thesis, The University of British Columbia, Canada.
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