
Numerical methods for set transport
and related partial differential equations

Olivier Mercier

Master of Science

Department of mathematics and statistics

McGill University

Montreal, Quebec

June 2013

A thesis submitted to McGill University in partial fulfillment of the
requirements of the degree of Master of Science in Mathematics and Statistics

c©Olivier Mercier 2013

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Jean-Christophe Nave for his

academic and moral support throughout my master program. I would also like

to thank the Natural Sciences and Engineering Research Council of Canada

and the Fonds québécois de la recherche sur la nature et les technologies for

their financial support.

The new ideas presented in chapter 3 were developed in collaboration with

Jean-Christophe Nave, Rodolfo Ruben Rosales (Massachusetts Institute of

Technology) and Benjamin Seibold (Temple university). The new method

of chapter 4 was developed with Jean-Christophe Nave. Applications to Euler

equations in chapter 5 were done with Jean-Christophe Nave and Kai Schnei-

der (Université de Provence).

ii

ABSTRACT

In many cases, the simulation of a physical system requires to track the

evolution of a set. This set can be a piece of cloth in the wind, the boundary

between a body of water and air, or even a fire front burning through a forest.

From a numerical point of view, transporting such sets can be difficult, and

algorithms to achieve this task more efficiently and with more accuracy are

always in demand. In this thesis, we present various methods to track sets in a

given vector field. We also apply those techniques to various physical systems

where the vector field is coupled to the advected set in a non-linear way.

iii

ABRÉGÉ

Dans plusieurs situations, la simulation de systèmes physiques requiert

de suivre l’évolution d’un ensemble. Cet ensemble peut être un bout de tissu

dans le vent, la frontière entre une masse d’eau et l’air, ou même le front d’un

feu brûlant à travers une forêt. D’un point de vue numérique, transporter

de tels ensembles peut être difficile, et des algorithmes pour accomplir cette

tâche plus efficacement et avec plus de précision sont toujours en demande.

Dans ce mémoire, nous présentons plusieurs méthodes pour suivre l’évolution

d’ensembles dans un champ de vecteur donné. Nous appliquons aussi ces

techniques à divers systèmes physiques où le champ vectoriel est couplé de

manière non linéaire aux ensembles évolués.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

ABSTRACT . iii

ABRÉGÉ . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

1 Introduction . 1

2 Level set methods . 3

2.1 Computing characteristic curves 10
2.2 Interpolation spaces . 13

2.2.1 Polynomial interpolation and WENO schemes 14
2.2.2 Gradient-augmented level set method 20

2.3 Improving level set schemes 23
2.3.1 Boundary conditions 24
2.3.2 Narrow band methods 25
2.3.3 Reinitialization . 27

3 Particle and hybrid methods . 29

3.1 Recovering sets from particles. 29
3.1.1 Moving least squares method 31
3.1.2 Circle envelope . 34

3.2 Hybrid methods . 37
3.2.1 Least squares minimization 37
3.2.2 Taylor extrapolation from particles 44

4 Set transport through diffeomorphisms 52

4.1 Mathematical formulation 53
4.2 Numerical implementation 57

4.2.1 Dynamic grid resolution 57
4.2.2 Pseudo-code algorithm 58

4.3 Numerical examples . 59
4.3.1 2D swirl test . 60
4.3.2 3D deformation field 64

v

4.3.3 Complicated sets . 67
4.3.4 Triple and quadruple points mosaic 71
4.3.5 Computational efficiency 72

5 Application to specific partial differential equations 78

5.1 Navier-Stokes equations . 78
5.2 Euler equations . 82

5.2.1 Results . 85
5.2.2 Test case : three vortices 85
5.2.3 Fine structures . 87
5.2.4 Efficiency . 88

6 Conclusion and outlook . 92

References . 93

vi

LIST OF TABLES

Table page

4–1 Time comparison of the GALS and CM methods (2D). 62

4–2 Time comparison of the GALS and CM methods (3D). 67

5–1 Computational times for solving Euler equations 89

vii

LIST OF FIGURES

Figure page

1–1 Example of set transport . 2

2–1 Two level set functions for the same circle. 5

2–2 Three perturbed level set functions 5

2–3 Example of evolution of a level set function 8

2–4 Level set function and topology changes. 9

2–5 Three different behaviors of characteristic curves 12

2–6 An 8× 8 grid . 14

2–7 A piecewise linear interpolant 16

2–8 A piecewise cubic interpolant 16

2–9 Cubic interpolant using ghost points 17

2–10 Interpolation using a WENO scheme. 18

2–11 Extension of a 1D interpolant to 2D. 19

2–12 Basis functions in 1D . 21

2–13 Three examples of behavior around the boundary 25

2–14 Level set modification for a flow crossing boundaries 26

3–1 Problems occuring with the explicit particle representation. . . . 31

3–2 Two weight functions . 34

3–3 Evolution of particle density for a problematic case. 35

3–4 Curve represented by the envelope of circles. 36

3–5 Hybrid least squares method : Swirl test with low particle density. 48

3–6 Hybrid least squares method : Swirl test with high particle
density . 48

3–7 Hybrid least squares : long term results for the swirl test. 49

viii

3–8 Hybrid least squares : results for the Zalesak’s disk test. 49

3–9 3D deformation test using the hybrid least squares method . . . 50

3–10 Convergence of the least squares modification. 51

3–11 Error from Taylor and GALS interpolants. 51

4–1 Smooth vector field inducing sharp structures. 53

4–2 The diffeomorphism ~χ0. 54

4–3 2D swirl test using the CM method. 61

4–4 Comparison of the GALS and CM methods. 63

4–5 3D deformation of a sphere. 66

4–6 2D deformation of the Mandelbrot set. 69

4–7 2D deformation of open curves. 71

4–8 2D deformation of a periodic mosaic pattern. 73

4–9 Time v.s. cell width for the CM method. 76

4–10 Error v.s. cell width for the CM method. 77

4–11 Time v.s. error for the CM method. 77

5–1 Mutliphase fluid. 79

5–2 Ghost fluid method. 81

5–3 Evolution of three vortices. 86

5–4 Comparison of different interpolants for Euler equations. 89

5–5 Grid transformed under the diffeomorphism. 90

5–6 Comparison of different grid sizes for Euler equations. 90

ix

CHAPTER 1
Introduction

A wide variety of scientific problems have as their main objective the

evolution of a set. In hydrodynamics, the set can be the interface between

water and air. In computer graphics, the set can be part of a smooth surface

representing a piece of cloth. In meteorology, the set can be the collection of

water droplets forming a cloud. In all of these applications, we are interested

in knowing how the set evolves under given physical laws.

These settings give rise to systems of partial differential equations (PDE).

For most interesting applications, the equations governing the motion of the

abovementioned sets is only a piece of a very complex puzzle. Other equations

are included in the system to describe the evolution of all the variables in the

physical situation of interest. But still, the final goal is often to compute the

evolution of the set, as is the case in the three examples given above.

The system of differential equations involved are usually too complicated

to be solved analytically, and numerical methods have to be employed. This

thesis thus focuses on numerical methods to transport sets. More precisely,

we focus on the problem of a set passively transported in a vector field, as

depicted in figure 1–1. Such a vector field is often physically determined by

the other equations of the system, but in some cases the vector field is provided

explicitely. This is for example useful in artistic simulations where an artist

wants to dictate the movement of the set.

1

Figure 1–1: Example of set transport. An initial circle is deformed under a
time dependant velocity field.

This thesis is organized as follows. Chapter 2 presents the level set

method, a widely used approach to transport closed manifolds such as closed

curves in 2D or surfaces in 3D. Chapter 3 explores different techniques using

particle clouds and their combination with level set methods. Then in chapter

4 we consider the advection of general sets through the use of diffeomorphisms.

All those methods are put to good use in chapter 5, where we apply them to

the complicated and non-linear case of fluid simulations. Finally, chapter 6

summarizes the thesis and presents some outlooks and future work.

2

CHAPTER 2
Level set methods

In many applications, the set to be evolved is a closed manifold, like the

boundary of a body of water, or a flame front burning through a forest. The

location of the set is of course the most important aspect of the manifold that

we want to track, but other features are of interest. For instance, it is useful to

know which part of the domain is enclosed by the manifold, and which part is

outside. This can determine which part of the forest has alreadry burnt, and

which part is yet untouched. We can also be interested in the normal vector

at points of the manifold. This is useful to know how pressure acts in a fluid

simulation, for instance.

Level set methods allow to advect manifolds while representing all those

features, and even more. The method was first introduced by Osher and

Sethian in 1988 [20]. The idea they introduced comes from the implicit repre-

sentation of closed manifolds, that is, the representation through an implicit

function in higher dimension. For example, to describe a unit circle centered

at the origin of the plane, a simple equation is

x2 + y2 − 1 = 0. (2.1)

We say that the circle is the zero level set of the function φ(x, y) := x2 +y2−1.

In general, in d dimensions, the level set α of a function φ(~x) : Rd → R is the

set satisfying φ(~x) = α. Throughout this thesis, the level set α = 0 will be

used unless stated otherwise.

3

Similarly, when given a closed manifold M , any function φ such that M

is a level set of φ is called a level set function for M . Note that for a given

manifold M , the level set functions is not unique. For instance, if the manifold

is again the unit circle centered at the origin, we can use φ(x, y) = x2 + y2− 1

as above, but ψ(x, y) =
√
x2 + y2 − 1 also works. We have that

ψ(x, y) = 0 (2.2)

⇔
√
x2 + y2 = 1 (2.3)

⇔ x2 + y2 − 1 = 0 (2.4)

so the unit circle is indeed a zero level set of the function ψ. For ease of

visualization, the two functions and their identical zero level sets are shown

in figure 2–1. A choice of level set function therefore has to be made, and the

possibilities are infinite. Still, some level set functions are better than others

from a numerical point of view. To see this, we look at three different level set

functions representing the same 1D interval [−1, 1]. Those functions, shown

in black from left to right in figure 2–2, are

φ1(x) = 0.075x2 − 0.075 (2.5)

φ2(x) = |x| − 1 (2.6)

φ3(x) = arctan
(
x100

)
− π

4
. (2.7)

In red is the graph of the same functions shifted up by 0.05 to imitate numerical

errors. Also, under each graph is a figure showing the zero level sets of the

functions. The black rectangle represents the [−1, 1] interval, and the red

bars represent the bounds of the interval represented by the shifted level set

functions.

4

Figure 2–1: Two level set functions for the same circle. The plane z = 0
intersects both functions and the slice is shown to the right of each function.
The zero level set is indeed the same.

Figure 2–2: Three perturbed level set functions. All initial functions (black)
represent the same interval, and they are shifted up by 0.05 to imitate nu-
merical errors. Under each function is the set they represent (red) compared
to the [-1,1] interval (black rectangle). A steeper slope is more resistant to
perturbations.

5

From this example, we see that the steeper the level set function is around

its zero level set, the more robust the corresponding set is to perturbations.

In a real life situation, various numerical errors will add noise to the level set

function, so it is essential to ensure robustness. Unfortunately, a very steep

function such as φ3 is difficult to represent numerically. We will discuss this in

more details in section 2.2, but the basic argument is that level set functions

are often represented by polynomials. Since polynomials are continuous and

smooth, they are not well suited to represent almost discontinuous functions

such as φ3. Therefore, when choosing the level set function to represent a set, a

good compromise is to aim for a function with unit slope. Formally, we choose

the level set function φ so that it satisfies
M = {~x ∈ R2 | φ(~x) = 0}

||∇φ|| = 1 almost everywhere

interior(M) = {~x ∈ R2 | φ(~x) < 0}

(2.8)

where ∇ is the gradient operator. Such a definition gives a unique level set

function for any given smooth manifold M .

An example of a level set function that satisfies definition (2.8) for the

unit circle is the function ψ(x, y) =
√
x2 + y2 − 1 seen previously in figure

2–1. The gradient is 1 everywhere except at the center of the circle, which is

in accordance with definition (2.8). In general, such a level set function can

be defined as the signed distance function of the set.

Now, remember that our objective is to transport sets in a vector field.

The main advantage of the level set formulation is that set advection translates

to a simple PDE for the level set function. Given a vector field ~u(~x, t), we want

every point of the set to move with the direction and velocity prescribed by

6

the vector field at any time. Let M(t) be the transformed set at time t, with

M(0) being the initial set. We want

∂t~x(t) = ~u(~x(t), t) (2.9)

for all points ~x(t) ∈ M(t) for all times t. Equation (2.9) thus describes the

path that points ~x(t) follow in the vector field. Such trajectories are called

characteristic curves.

In the level set formulation, we want to modify the level set function

φ(~x, t) so that its zero level set is M(t) at all time, that is

φ(~x(t), t) = 0 ∀~x(t) ∈M(t) ∀t. (2.10)

But since the level set function is defined everywhere, and not only on the zero

level set, we extend this condition so that it applies to all level sets. Let φ0 be

the level set function at time t = 0, we want

φ(~x(t), t) = φ0(~x(0)) ∀~x ∀t. (2.11)

That is, we want the values of φ to be constant on characteristic curves. Taking

a time derivative of (2.11) and using the chain rule, we get

∂tφ(~x(t), t) + ∂t~x(t) · ∇φ(~x(t), t) = 0 (2.12)

which, combined with equation (2.9), becomes

∂tφ(~x(t), t) + ~u(~x(t), t) · ∇φ(~x(t), t) = 0. (2.13)

We pair this equation to the initial condition φ(~x(0), 0) = φ0(~x) to have a closed

system of differential equations. For clarity, we will drop the arguments of most

functions from now on. Doing so, equation (2.13) and its initial condition

7

Figure 2–3: Example of evolution of a level set function as a solution of equa-
tion (2.14). The zero level set is represented under the level set functions. The
scale blue to red goes from negative to positive values.

become

∂tφ+ ~u · ∇φ = 0

φ(~x, 0) = φ0(~x).

(2.14)

This last set of equations is called the linear transport equation. An example

of its solution is shown in figure 2–3, where we see the initial level set function

being evolved under some vector field. The corresponging zero level sets are

also shown under each functions.

Level set methods are therefore very convenient since they completely

abstract from the set itself by transfering all the information to the level set

function. One important consequence is that the topology of the transported

sets can change over time, and this change is completely oblivious to the

method. For instance, figure 2–4 uses two disjoint circles for an initial set. The

8

Figure 2–4: Level set function and topology changes. The zero level set initially
has two components, which merge into one. This change is transparent to the
level set function.

velocity field then makes the two circles collapse, which changes the topology.

But this is not noticeable when only looking at the level set functions. Being

able to easily deal with such changes is one of the main reasons the level

set methods are so popular, because topology changes are very common in

practical applications. Consider for instance the simulation of a drop of water

entering a pool, where two disjoint bodies become one.

The transport equation (2.14) is well known and well understood. It is a

hyperbolic PDE whose solution is given entirely from its characteristic curves

and its initial condition. As stated by equation (2.11), the solution along

characteristic curves is constant. Therefore, to compute the value of φ(~x, t),

we only have to track the point ~x backwards alongs its characteristic curve up

9

to time t = 0. At this time, the solution is known (φ0) and the value at time t

can be evaluated. The next section focuses on computing those characteristic

curves.

2.1 Computing characteristic curves

We stated in the previous section that the solution of the transport equa-

tion (2.14) reduces to the computation of characteristic curves. To compute

the characteristic curve corresponding to a given point ~x0 at time t0, we need

to solve

∂t ~x(t) = ~u(~x(t), t)

~x(t0) = ~x0.

(2.15)

This is a simple ordinary differential equation (ODE). Depending on ~u, it may

be solvable analytically, but in general numerical methods have to be used.

When a point is tracked back in time following a characteristic curve, the

result is called a footpoints of this point, and will be denoted by x̊(~x, t). Note

that there is a time dependence since the location of the footpoint depends on

how far back we track the point ~x in time.

A popular family of methods to solve ODEs are the Runge-Kutta methods.

They can be found in most numerical analysis book, such as [3]. To give a

quick overview of those methods, let’s look at the first order Runge-Kutta

methods, also known as the Euler method. Starting at our initial condition

(i.e. time t = t0 and position ~x0), we want to know what the solution is a

small time away from t0. Since we are interested in solving the characteristics

backwards in time, we want to compute the footpoint at time t0−∆t for some

small time interval ∆t. The Euler method approximates the solution by

~x(t0 −∆t) ≈ ~x(t0)−∆t ~u(~x0, t0). (2.16)

10

By taking a Taylor expansion of the left hand side of (2.16), we can make the

more precise statement

~x(t0 −∆t) = ~x(t0)−∆t ~u(~x0, t0) +O(∆t2). (2.17)

This means that the error we make using this method is, for asymptotically

small values of ∆t, proportionnal to ∆t2. For this reason, we say the method

is locally second order 1 .

Runge-Kutta methods are generalized versions of the Euler method which

provide schemes of higher order. These methods can be used to solve ODE

(2.15), but only for a small time step ∆t. To solve the ODE for a longer time,

we iterate; Because of the initial condition in equations (2.15), the solution

is known at time t = t0, so we can use a Runge-Kutta method to find the

solution at t0 −∆t. With this new information, we can compute the solution

at t = (t0 −∆t)−∆t = t0 − 2∆t, and so on.

Depending on the vector field ~u, the characteristic curves can have singular

behaviors [7]. Figure 2–5 shows three different cases regarding characteristics.

On the left, we have the simple case where two characteristics ending at dif-

ferent points do not cross in the past. This is the standard behavior for the

linear transport equation with regular enough ~u. Then, the middle picture

shows the case where characteristics form a shock, that is, two characteristics

1 Numerical schemes for ODEs are usually classified by their global order
instead of their local order. The global order is the accumulated error made
to reach a certain time, while the local order is the error made at every time
step. The global order is always one less than the local order for ODEs. This
explains, for instance, the nomenclature of Runge-Kutta methods. See [3] for
more details.

11

Figure 2–5: Three different behaviors of characteristic curves. The left figure
is the regular case where the characteristic curves do not cross, the middle
picture shows a shock, and the last figure shows a rarefaction.

join at some point. This is a problem, because when tracing a characteris-

tic backwards, the curve splits into multiple branches and a choice has to be

made. The third case is a rarefaction, where a characteristic curve splits into

two. When tracing curves backwards, this causes two points to transport the

same information, and can cause irregular behavior in the solution. For now,

we assume that only the first case is present, i.e., the characteristic curves do

not cross. This problem will resurface when we look at fluid simulations in

chapter 5.

Using an ODE solver, we can devise an algorithm to solve the PDE (2.14)

approximately. It is described in algorithm 1. Of course, this algorithm is not

Algorithm 1 Solving the transport equation

· Define the initial level set function φ0 representing the initial set M .
for t = ∆t to ∞ do
· For all points in the domain, compute the footpoint x̊ at time t−∆t.
· Evaluate φ(̊x, t−∆t). Copy this value to φ(~x, t).
· Increase t by ∆t.

end for

usable from a numerical point of view, because it requires at every time step

to evaluate the new level set function at every single point in the domain. The

12

next section explains how to solve this problem by only evaluating the function

at a finite set of points.

2.2 Interpolation spaces

Since we cannot evaluate the evolved level set function at every point in

algorithm 1, we need to use interpolation. There are countless interpolation

spaces that have been developed, and the best choice usually depends on the

situation. For instance, if we know a priori that the function to approximate

is monotone, it is wise to pick an interpolant that guarantees this property. In

this section, we focus on two interpolants that can be used in a wide variety

of situations.

The interpolants we present are based on regular grids. For clarity, we

suppose the whole domain of the problem is the 2D square [0, 1]× [0, 1]. Nev-

ertheless, the methods are easily generalizable to any dimension and can be

adapted to deal with any domain shape.

For a given integer n, we call grid points the set of (n+1)× (n+1) points{
(xi, yj) :=

(
i

n
,
j

n

)∣∣∣∣ i, j ∈ {0, 1, ..., n}} (2.18)

and we index them using the values i and j of their definition. The value

of a function φ on a grid point will be denoted using the same index, i.e.

φi,j := φ(xi,j), and similarly for any derivatives of the function. We call grid

the graph that joins every two grid points for which all indices are the same

except for one that differs by exactly one. We say that a grid with grid points

(2.18) has size n× n. For example, an 8× 8 grid is shown in figure 2–6. Note

that such a grid divides the domain into multiple regions called cells. In 2D,

these cells are indexed by (i, j) where i, j ∈ {1, ..., n}. The cell (i, j) is the one

13

Figure 2–6: An 8× 8 grid. Notice how the grid divides the domain into cells.

that has corner grid points (i− 1, j − 1), (i− 1, j), (i, j − 1) and (i, j). In our

case, each cell has cell sizes ∆x = 1
n

and ∆y = 1
n
.

When using an interpolant based on a grid, we can modify algorithm 1 to

get the practical version described in algorithm 2. Any method following the

general structure of algorithm 2 is called semi-Lagrangian, since it combines

an advection step (Lagrangian) and a projection onto an interpolation space

on a grid (Eulerian). This structure is also refered to as the CIR method [5].

Algorithm 2 Solving the transport equation on a grid

· Define the initial interpolant φ̄0 representing the initial set M .
for t = ∆t to ∞ do
· For all grid points ~x, compute the footpoint x̊ at time t−∆t.
· Evaluate φ̄(̊x, t−∆t). Copy this value to φ̄(~x, t).
· Create the new interpolant φ̄ from the newly computed data on the grid.
· Increase t by ∆t.

end for

2.2.1 Polynomial interpolation and WENO schemes

We begin by looking at interpolants in one dimension. An easy way of

defining an interpolant on a 1D grid is to use linear interpolation. Assume

that the function values φ(xi) are known at every grid point. We can define

an interpolant inside a grid cell by using only the information on the edges of

14

this cell. To achieve this, define a linear interpolant φ̄ inside a cell i by

φ̄(x) :=
φi
∆x

(x− xi−1)− φi−1

∆x
(x− xi). (2.19)

This defines a piecewise linear interpolant on all of [0, 1]. Such an interpolant

is shown in figure in figure 2–7. Note that the interpolant matches the true

function values on the grid points, i.e. φ̄(xi) = φ(xi) ∀ i.

As was the case for Runge-Kutta methods in the previous section, we can

quantify the error made when using such interpolants. This is easily done using

errors bounds on Lagrange polynomials [3]. Namely, for a linear interpolant,

we have

φ̄(x) = φ(x) +O(∆x2) (2.20)

for any x in cell i. We say interpolant (2.19) is locally second order accurate

in space2 .

To have better accuracy, we can use Lagrange polynomials of higher order.

For instance, the third order Lagrange polynomials is defined as the cubic

polynomial interpolating 4 consecutive data points. Therefore, for a cell i, we

can use points xi−2, xi−1, xi and xi+1 to define a cubic interpolant. This is

shown in figure 2–8. Such an interpolant is now locally fourth order in space,

and the method can obviously be generalised to arbitrary order by using more

points.

A problem already arises. We call stencil the set of points used to define

the interpolant in a given cell. For the piecewise cubic interpolant, the stencil

2 As opposed to the Euler method used to solve the ODE (2.15), which was
locally second order in time.

15

Figure 2–7: A piecewise linear interpolant. The black dots represent values of
the true function φ, and the piecewise linear function φ̄ (black lines) interpo-
lates this data.

Figure 2–8: A piecewise cubic interpolant. The black dots represent values of
the true function φ, and the piecewise cubic function φ̄ interpolates this data.
The dashed curves are part of the same cubic, but only the solid curve is used
as an interpolant.

16

Figure 2–9: Cubic interpolant using ghost points. Points are added at each
end of the [0, 1] interval to allow cubic interpolation in the first and last subin-
tervals.

goes further than the bounds of the cell. Therefore, the stencil goes outside the

domain for cells 1 and n. To solve this problem, we use ghost points. These are

artificial points added on the outside of the domain. The values of the function

on ghost points is usually determined using boundary conditions of the PDE

system we want to solve. An example of cubic interpolant using ghost points

is shown in figure 2–9 for cells 1 and n.

One issue with polynomial interpolants is that they are bad at representing

function with large slopes. Instead of having well defined jumps, polynomials

of degree ≥ 2 can be highly oscillatory around non-smooth data. To overcome

this problem, Weighted Essentially Non-Oscillatory (WENO) schemes are of-

ten used. We describe here the 5 point stencil version of the WENO scheme

since it is the most widely used. Instead of defining the interpolants inside cells,

they are defined between cell centers. Using quadratic Lagrange polynomials,

we can define the interpolant in the interval [xi− 1
2
, xi+ 1

2
] in three natural ways.

Namely, we can use either the points S1 = {xi−2, xi−1, xi}, S2 = {xi−1, xi, xi+1}

or S3 = {xi, xi+1, xi+2} to define the polynomial. The idea of WENO schemes

is to combine the three interpolants in a linear combination. The method

17

Figure 2–10: Interpolation using a WENO scheme. The interpolant in the
region [xi− 1

2
, xi+ 1

2
] (bounded by the two blue dotted lines) is determined using

a linear combination of three different quadratic curves.

defines a measure of smoothness for each of the three interpolants and puts

more weight on smoother interpolants. Since the smoothness indicator usually

depends on the function, those methods are non-linear.

In figure 2–10, we show a common situation where a sharp slope exists

inside a cell i + 1. In this case, the quadratic function using S1 is smoother

than the other two. The interpolant in between the two dotted blue lines

will therefore be closer to the left quadratic curve than from the other two.

Essentially, this is what we want, since the interpolants using S2 and S3 are

more oscillatory and will tend to create more errors. All the details regarding

the method can be found in [12] and [18].

The method is locally fifth order accurate for smooth functions, which is

more than enough for most applications. This weighting idea gives a method

that is very robust to sharp gradients in the solution. Such jumps can happen

for instance when characteristic curves create shocks, which is very common

and explains the popularity of WENO schemes.

18

Figure 2–11: Extension of a 1D interpolant to 2D. We use the 1D interpolant
in each variable sequentially. First, use an interpolation in x to evaluate the
function values at the location of the red crosses. Then, using those 4 new
values, we can use an interpolation in y to approximate the value at the desired
(x, y) location.

WENO schemes can easily be extended to higher dimensional spaces. In

fact, any 1D interpolant can be extended to higher dimension on regular grids

using the following simple technique. For clarity, we explain this method using

the cubic interpolant of figure 2–8. The idea is to interpolate each dimension

one after the other. Figure 2–11 shows how to do this in 2D. Suppose we want

to compute φ̄(x, y), where the point (x, y) falls in the cell (i, j). First, use

the points (i − 2, γ), (i − 1, γ), (i, γ) and (i + 1, γ) (shown as green squares)

to interpolate φ in the x direction at (x, yγ) (shown as red crosses) for γ ∈

{j − 2, j − 1, j, j + 1}. Then, using those four values, interpolate φ in the

y direction at the desired location (shown as a blue dot). The exact same

idea can be used for linear interpolation and WENO schemes, and can be

generalized to any dimension.

19

2.2.2 Gradient-augmented level set method

The second interpolant we present is the main component of the Gradient-

Augmented Level Set (GALS) method. It was first introduced by Nave et al.

in [19], and further developed in [4] and [23]. As for WENO schemes, the

method is generalizable to any order and dimension, but we present here the

cubic GALS interpolant in two dimensions.

Instead of using large stencils to achieve high order interpolation, the

GALS interpolant uses more data at every grid point. In addition to knowing

the values of φ at the grid points, assume we also know the values of some of

its derivatives. The collection of data on each grid point is call the partial jet

at this grid point.

Since the 2D interpolant can be constructed using the idea of figure 2–11,

we begin by presenting the interpolant in 1D. Let the jet at each grid point i

consist of the function values φi := φ(xi) and its first derivative ∂φi := ∂xφ(xi).

The interpolant on grid cell i is defined as the cubic polynomial satisfying the

function values and derivatives at both ends of the cell. This polynomial is

called the Hermite cubic polynomial on this cell. To easily build the Hermite

polynomial, consider the four basis functions

wvα(x) =

f(x) if v = 0 and α = 0

f(1− x) if v = 1 and α = 0

g(x) if v = 0 and α = 1

−g(1− x) if v = 1 and α = 1

(2.21)

where f(x) = 2x3 − 3x2 + 1 and g(x) = x(1 − x)2. The four basis functions

are shown in figure 2–12. They have the useful property that each of them has

either value or derivative 1 at either x = 0 or x = 1 while having all other values

20

Figure 2–12: Basis functions in 1D. Each function has either value or derivative
1 at either x = 0 or x = 1 while having all other values and derivatives equal
to 0.

and derivatives equal to 0. Since all four functions are cubic polynomials, the

Hermite interpolant can be constructed from a linear combination of the basis

functions. If ∆x = 1, the interpolant on a cell i is

φ̄(x) = φi−1w
0
0(x) + φiw

1
0(x) + ∂φi−1w

0
1(x) + ∂φiw

1
1(x). (2.22)

For ∆x 6= 1, the basis function are scaled and the same linear combination is

used.

The equivalent interpolant in 2D uses a jet composed of the function

values, the x and y derivatives and the xy derivative. While the idea of inter-

polating dimension by dimension can be used to define the GALS interpolant

in higher dimension as in figure 2–11, a generalization of the basis function

idea is easier to use. We use a tensor product of 1D basis to define the 2D

basis functions

W ~v
~α(~x) =

2∏
k=1

wvkαk
(~x) (2.23)

21

where the indices ~α = {α1, α2} and ~v = {v1, v2} have one component for each

dimension. Note that those basis functions have the similar property of having

either value, derivative in x, y or in xy equal to 1 at a certain corner while all

those values are 0 at the other corners. A linear combination similar to (2.22)

using 16 terms can therefore be used to define a 2D bicubic interpolant in a

given cell.

The main advantage of the GALS interpolant over WENO interpolants

is the locality of its stencil. For the same order of accuracy (locally fourth

order), the WENO interpolant uses 25 data points to define the interpolant in

a given cell, while the GALS interpolant only uses the four corners of the cell.

Therefore, no ghost points need to be used on the boundary, which makes the

implementation easier. The price to pay is that more information has to be

tracked on each grid point.

As before, the function values φi,j are transported using the transport

equation (2.14)

∂tφ+ ~u · ∇φ = 0 (2.24)

but new equations need to be used to transport the ∂x, ∂y and ∂xy derivative.

Taking the gradient of the transport equation, we get

∂t(∇φ) +∇ (~u · (∇φ)) = 0 (2.25)

which is an evolution equation for ∇φ, i.e. for ∂xφ and ∂yφ. A similar equation

can be derived for the ∂xy derivative. In the original paper by Nave et al. [19],

these equations are used to advect the jet on the grid. However, in [23], a more

convenient solution is proposed to advect derivatives. This other approach is

called ε-finite differences. When we have to compute information by tracking

22

back a point (x, y) at time t along a characteristic, four points are tracked

instead of one. Those points are (x− ε, y− ε), (x− ε, y+ ε), (x+ ε, y− ε) and

(x+ ε, y + ε) for a very small value ε. This results in the four footpoints

x̊−1,−1 := x̊((x− ε, y − ε), t−∆t) (2.26)

x̊−1,+1 := x̊((x− ε, y + ε), t−∆t) (2.27)

x̊+1,−1 := x̊((x+ ε, y − ε), t−∆t) (2.28)

x̊+1,+1 := x̊((x+ ε, y + ε), t−∆t) (2.29)

which can be combined to approximate the required jet data. These approxi-

mation are

φ(x, y) ≈ x̊−1,−1 + x̊−1,+1 + x̊+1,−1 + x̊+1,+1

4
(2.30)

∂xφ(x, y) ≈ −x̊−1,−1 − x̊−1,+1 + x̊+1,−1 + x̊+1,+1

4ε
(2.31)

∂yφ(x, y) ≈ −x̊−1,−1 + x̊−1,+1 − x̊+1,−1 + x̊+1,+1

4ε
(2.32)

∂xyφ(x, y) ≈ x̊−1,−1 − x̊−1,+1 − x̊+1,−1 + x̊+1,+1

4ε2
. (2.33)

By taking ε small enough, these approximations can be made as accurate

as required to maintain the order of accuracy of the scheme. The ε-finite

differences approach therefore allows to use the same transport equation (2.14)

as before to compute all the derivatives required by the GALS interpolant.

2.3 Improving level set schemes

Since the level set methods are very general, they sometimes have to be

modified to better suit specific problems. This section presents some possible

modifications that either facilitate implementation, speed up calculations or

improve stability.

23

2.3.1 Boundary conditions

In some situations, the behavior of the solution at the boundary of the

computational domain is of prime importance. Physical constraints usually

impose this behavior through boundary conditions. Those conditions also

depend on the vector field ~u at the boundary.

Depending on the situation, the characteristic curves may cross the bound-

ary of the domain, and therefore exit the region on which the level set function

is defined. This is a problem, since if a footpoint falls outside the domain, we

cannot evaluate the level set function at this location.

Figure 2–13 shows three possible situations that can occur. The left figure

shows a flow where the vector field is zero on the boundary of the computa-

tional domain. This often happens in fluid simulation and is called a no slip

boundary condition. This situation is not problematic because no characteris-

tic can cross the boundary, and footpoints always fall inside the domain. The

middle figure shows a vector field that is periodic across the boundary. In such

a situation, if a footpoints falls outside the domain, it can be brough back to

the other side. For instance, if a footpoints exists to the right of the domain,

it is equivalent to it entering through the left, so this situation is also easy to

handle.

Finally, the right panel of figure 2–13 shows a vector field that exits the

domain without any particular boundary condition. This is the most prob-

lematic situation since a footpoint exiting the domain cannot be brought back

inside it in a natural way. Still, if the set we are tracking is far away from

the boundary, we can solve this problem by changing the level set function.

Consider the situation where the initial set is a circle of radius 0.25 centered

at (0.5, 0.5) in the domain [0, 1]× [0, 1]. We want to transport this circle in the

24

Figure 2–13: Three examples of behavior around the boundary. The left fig-
ure shows a no slip condition, the middle figure shows a periodic boundary
condition, and the right figure shows a case where the flow enters and exists
the domain without any particular boundary condition.

vector field of the right image in figure 2–13. The situation is shown in the left

part of figure 2–14. This figure also shows two possible level set functions to

represent the circle. The left one is the standard level set function as defined

by equation (2.8). The right one is a level set function that is constant around

the boundary of the domain. For the left one, if a footpoint exits the domain,

we have to use some extrapolation to evaluate the function. In this case it is

possible since the level set function is simple, but for a more deformed func-

tion, this can be hard to do. For the right level set, the extrapolation is trivial

since the function is constant around the boundary. This trick can be used

whenever the set we are evolving does not come close to the boundary.

2.3.2 Narrow band methods

In section 2.3.1, we saw that the level set function can be modified away

from the zero level set without changing the represented set. Therefore, only

the region of the level set function laying around the zero level set matters.

This was originally a big drawback of level set methods since most of the

computed level set function is not used.

25

Figure 2–14: Level set modification for a flow crossing boundaries. The left
figure shows the case of a circle transported in a vector field that enters and
exits the domain. The middle figure shows the level set function we would
usually use, and the right figure shows a modified level set function that is
constant around the boundary, allowing it to be evaluated outside the domain
through trivial extrapolation.

To solve this problem, new methods were developed that only compute

the level set function in a band around the manifold being transported. For

this reason, these methods are generally refered to as narrow band methods,

and a good example is found in [1]. Before performing an advection step of the

level set function, these methods first identify the cells that are located within

a given distance β away from the zero level set. This distance is usually of

the order of 3 cell widths. In these cells, the level set function is evaluated as

usual by tracking characteristics. Note that since the set moves in time, the

cells where the function is to be evaluated have to be redefined at every step.

To evaluate which cells are part of the band, the level set function can

be used directly. If this function is built using definition (2.8), it is a signed

distance function to the set, so the band is initially made of grid points where

|φi,j| ≤ β.

Narrow band methods significantly reduce the computational cost of level

set methods. For the regular level set method, the computational cost per

time step is C1(n+ 1)2, where C1 is the time taken to compute the new value

26

of the level set function for one grid point. Asymptotically, for large values of

n, we say the methods has a computational cost of O(n2). For a narrow band

level set method, this cost becomes C1b(n, β), where b(n, β) is the number of

grid points in the narrow band. For fine enough grids, i.e. for large enough n,

b(n, β) behaves like O(n), so the method is one order faster than usual level

set methods. In many industrial applications, the grids used have very high

resolution to ensure high accuracy of the solutions, so narrow band methods

are greatly beneficial in such situations.

2.3.3 Reinitialization

As was emphasized at the beginning of this chapter, it is desirable to have

a level set function with unit slopes. But even if this condition is met for the

initial level set function, it might be violated as the function is deformed by

the vector field. For this reason, a reinitialization step is sometimes used. The

purpose of this step is to replace the current level set function by another one

having the same zero level set, but with ||∇φ|| = 1 almost everywhere.

The most natural way of doing it is to take the current level set function

and identify its zero level set M . Then, the level set function is replaced by

the solution of the system
||∇ψ|| = 1

ψ = 0 on M.

(2.34)

This system is called the Eikonal equation. The intuition is somewhat violated

as (2.34) uses explicitely the set M , which breaks the idea of having all the

information enclosed in the level set function. But numerous methods can be

used to solve (2.34) efficiently. See for instance [24].

27

Another popular way of achieving ||∇φ|| = 1 was proposed by Sussman

et al. in [27]. Starting with a function ψ0, they use the equation

∂τψ = sign(ψ0)(1− |∇ψ|). (2.35)

A steady state solution of (2.35) is a function having ||∇ψ|| = 1 with the same

zero level set as ψ0. This solution can be computed using an interative process.

In practive, only a few iterations are necessary for the level set function to

guarantee a signed distance function, at least near φ = 0.

Even though they are not essential, reinitialization steps are useful to

ensure stability in situations where the level set function can become greatly

distorted. However, for the numerical tests presented in this thesis, no reini-

tialization step was used. We will see in the following chapters that using the

GALS framework does not require to maintain ||φ|| = 1.

28

CHAPTER 3
Particle and hybrid methods

In this chapter, we present a completely different way to represent and

transport sets in a vector field. Instead of using an implicit representation of

sets as in chapter 2, we use an explicit description. We will then merge the

explicit approach with level set methods to create hybrid methods.

We call Lagrangian particles points that are advected passively in the

vector field ~u. Recall from chapter 2 that such particles follow characteristic

curves. In other words, if a point x̂(t) is a Lagrangian particle, it satisfies the

ODE

∂tx̂(t) = ~u(x̂(t), t). (3.1)

Consider an initial set M(0). One way of transporting it in a vector field ~u is

to transport each individual point of M using equation (3.1). The transported

set M(t) is then the collection of all transported initial points. Of course, this

cannot be done in practice since the sets we evolve are usually not finite. Still,

we can take a finite sample of points from the set, advect those points forward

along characteristics and then try to recover the whole transformed set from

the sample.

3.1 Recovering sets from particles.

Consider the 2D case. A natural way of using particles would be to define

curves explicitely. For instance, instead of defining a circle by

x2 + y2 − 1 = 0 (3.2)

29

we could define it by

{(cos(θ), sin(θ)) |θ ∈ [0, 2π[} . (3.3)

A numerical approximation of this set could then be to take the points{(
cos

(
2πi

m

)
, sin

(
2πi

m

))∣∣∣∣ i = {0, ...,m− 1}
}

(3.4)

for a given integer m and join all consecutive points by a line segment. But

this method has several problems. First, recall that we want to differentiate

the interior of the set from its exterior. With the explicit representation, there

is no trivial way of doing this.

Figure 3–1 shows two other problems that occur with the naive particle

representation. The left image shows the initial set, two circles centered hor-

izontally in the domain [0, 1]2. The numerical solution is shown in black and

the true solution is shown in red. The middle image shows the result after

some time in a vector field that stretches the circles into ellipses. Because we

didn’t use enough particles, the points get far from each other at the left and

right edges of the ellipses, and the approximated solution is not accurate. Of

course, taking more particles initially would reduce this error, but in general

we do now know in advance how many particles should be used.

The figure on the right shows the same initial condition, but now the flow

causes the two circles to cross. This is a problematic situation, since points

that were initially on the boundary are not anymore. At this stage, we would

have to delete some particles and completely redefine the connections between

the remaining particles to have the correct representation of the set, which is

not an easy task. This problem becomes even more complicated in 3D, where

there is no natural ordering of the particles.

30

Figure 3–1: Problems occuring with the explicit particle representation. The
initial set (red) sampled with particles (black dots) is joined by line segments
(black). The middle image shows a flow that deformed the circles into ellipses.
We see that the line segments are not a good approximation of the true set at
the left and right bound of the ellipses. The right image shows a case where
the two initial circles collapse. The particle representation is also problematic
here since some particles are not on the set anymore.

The following sections present two methods found in the litterature that

can be used to correctly recover the set from a particle sample.

3.1.1 Moving least squares method

The moving least square (MLS) method was first introduced by Lancaster

and Salkauskas in [16]. The description we give here is based on [22]. The

method comes in various forms, but we present the basics of the MLS methods.

The MLS method uses a level set function to represent the set, but it does

it in a very different way than what was presented in the previous chapter. We

start by taking particles in the domain. We call the set of those particles the

particle cloud and identify each particle by an index p ∈ P . The position of

those particles will be noted x̂p. The initial positions of those particles can be

taken randomly or strategically. For instance, we might want to concentrate

particles around the zero level set since this is where the information is most

important, like in the left image in figure 3–3. Then on each particle we record

the signed distance to the initial set. Note that this is equivalent to building

31

the level set function with definition (2.8) and then recording the value of the

function at the particle locations. For this reason, we denote the values on

the particles by φ̂p = φ0(x̂p). We will will often refer to φ̂p as the data on the

particles.

We recall the very important property of the transport equation (2.14)

that the function value on a given particle never changes over time. This

was stated before by equation (2.11). We therefore only need to compute x̂p,

and leave φ̂p constant. We then want to recover the level set function from the

particle cloud so that we can take its zero level set and recover the transported

set M(t).

The MLS method reconstructs an approximation of the function as a

polynomial. For a given polynomial basis {b1(~x), ..., bk(~x)}, any polynomial

P (~x) in the corresponding polynomial space can be written as

P (~x) =
k∑
j=1

ajbj(~x) = ~a ·~b(~x) (3.5)

where ~a = {a1, ..., ak} is a set of coefficients. The method uses the polynomial

that best fits the particle data around a point ~x to define the polynomial

interpolant at this point ~x. For a given set of particles x̂p with data φ̂p, p ∈ P ,

the method minimizes the functional

Ex̂ :=
∑
p∈P

w (~x, x̂p)
(
P (x̂p)− φ̂p

)2

(3.6)

where w (~x, x̂p) is a weight function. It is important to notice that since the

functional Ex̂ depends on ~x, we get a different polynomial interpolant for dif-

ferent evaluation points. To minimize the functional, the problem is rewritten

in terms of the weights ~a. The minimization problem then reduces to solving

a linear system.

32

Many weight functions can be chosen, but they usually have the form

w (~x, x̂p) = Θ(||~x− x̂p||) (3.7)

for some positive function Θ(d). This function determines the behavior of the

whole method. In general, we want the polynomial interpolant to be defined

using mostly the information located around the point ~x. For this reason, the

original paper [16] suggests using

Θ(d) = exp
(
−αd2

)
(3.8)

for some parameter α. Using this weighting function, all particles are taken

into account when computing the interpolant. But for computational reasons,

it might be preferable to compute the minimization using only particles that

fall in a small neighbourhood of the point ~x. To achieve this, a popular choice

is to take

Θ(d) =

 exp(−(d2 − d2
0)−2) if d ≤ d0

0 if d > d0

(3.9)

for some predetermined maximal distance d0, which gives a weighting function

with compact support. The two weight functions are represented in figure 3–2

for α = 1 and d0 = 1, with a normalization so that they both have unit area.

Recall that the minimization is done by solving a linear system, and the size

of this system depends on the number of particles we use. In a context where

we have thousands of particles throughout the domain, having a compactly

supported weight function is highly profitable.

The MLS method, like most particle based methods, has the disadvantage

that if not enough particles are used, the interpolant might be undetermined in

some regions. This can happen for instance if we use the compactly supported

33

Figure 3–2: Two different weight functions Θ that can be used in the MLS
method. The dashed blue line is function (3.8) and the full red line is function
(3.9). Both functions put emphasis on particles closer to the evaluation point,
but the red weighting has a compact support, reducing greatly computational
costs.

weighting function (3.9) and no particle is present in a d0 disk around ~x.

Making sure that this situation does not happen can be complicated, since the

particle density changes as the set evolves. Figure 3–3 shows a situation where

particles are originally placed in a band around the initial set, allowing to

determine the level set function around its zero level set. However, after some

time, the particles concentrate in certain areas and avoid other regions. The

right panel of figure 3–3 shows that the level set function cannot be evaluated

at a point ~x since no particle falls in its d0 neighbourhood. Various procedures

of particle management have been developed to add and delete particles as

time evolves to make sure that the particle density is appropriate at all times,

at the expense of complicating the algorithm.

3.1.2 Circle envelope

The second method we present was developed by Enright et al. in [6]. We

describe a simplified version in 2D for clarity.

34

Figure 3–3: Evolution of particle density for a problematic case. Particles (red
dots) are initially placed in a band around the set (black), which is enough
to reconstruct the level function around its zero level set. As time evolves,
the particle density changes, and in the right image, no particle falls in the d0

neighbourhood (blue circle) of a point ~x (blue cross), so the function cannot
be evaluated there.

As in section 3.1.1, we begin with a particle cloud. These particles are

initiated in a band around the initial curve. Around each particle, we put a

circle tangent to the curve and centered at the particle. This radius is simply

given by the distance from the particle to the curve. The envelope of the circles

is then used to represent the curve. The left image in figure 3–4 shows a curve

(red) represented by the envelope (blue) of many circles (black). Once again,

if not enough points are used, the curve is poorly represented. The right image

in figure 3–4 shows the same curve and its representation using more particles,

which gives a better result. As the particle density goes to infinity, the curve

will be exactly represented.

This method suffers from the same problem as the MLS method of section

3.1.1, that is, if after some time the particle density in a region becomes too low,

the method will not give good results. Therefore, particle management also

has to be used for this method. Another problem is that when particles follow

characteristic curves, the radii of their circles has to be changed. The transport

equation only states that the level set function values stay constant on particle,

35

Figure 3–4: Curve represented by the envelope of circles. Particles (black
dots) are placed around the original curve (red). Circles (black) tangent to
the curve are placed around particles, and their envelope (blue) is used to
represent the curve. We see that using more particules increases the quality
of the representation.

but it is not true that the distance from a particle to the set remains constant.

As a result, the particles need to follow different trajectories so that they

remain at their respective distance from the set. To achieve this, the circles

are pushed in the direction normal to the set until they are tangent again.

Even though the method requires a lot of particles and some complicated

and potentially costly particle management steps, it is relatively efficient since

advecting particles if very cheap (solving ODEs) compared to computing level

functions (solving a PDE).

In the original paper [6], the method is presented as a hybrid level set

method. The idea is to use a regular level set method, and then to use the

particle representation in regions where the level set method fails. To detect

those situations, we compare the particle position to the sign of the level set

function. If a particle changes sign, it indicates the level set function is not

accurate anymore. Once again, this step involves a lot of details and we refer

to [6] for in depth explanations.

36

3.2 Hybrid methods

We concluded the last section by proposing a method in which parti-

cles can be used in conjunction with level set functions in a hybrid manner.

One advantage of particle methods over interpolants defined on a grid is that

the advection of particles is much easier to compute and we can use a high

order solver to compute the particle positions accurately. When using semi-

Lagrangian schemes, the error is usually more important since errors from

the interpolation step add to the error made when tracking footpoints [19].

This makes particle clouds highly desirable information, and incorporating it

in semi-Lagrangian schemes can increase accuracy.

In this section, we present two novel ways to incorporate particles in the

GALS formulation presented in section 2.2.2.

3.2.1 Least squares minimization

One way of using particles in the GALS environment is to use them to

modify the Hermite interpolant. To do this, we add a modification step in

algorithm 2. The result is shown in algorithm 3.

Algorithm 3 Solving the transport equation on a grid with particles

· Define the initial interpolant φ̄0 representing the initial set M .
for t = ∆t to ∞ do
· Modify the interpolant using the particle information.
· For all grid points ~x, compute the footpoint x̊ at time t−∆t.
· Evaluate φ̄(̊x, t−∆t). Copy this value to φ̄(~x, t).
· Create the new interpolant φ̄ from the newly computed data on the grid.
· Increase t by ∆t.

end for

We start with a particle cloud as in section 3.1.1. On each of those par-

ticles, we store the function value φ̂(x̂p) for each particle p ∈ P . Particles are

transported passively in the vector field by equation (3.1).

37

Since the particles are a trusted sample of the true function φ, the idea

is to modify the GALS interpolant φ̄ in a cell so that it matches more closely

the values on the particles in that cell. More precisely, we want to minimize(
φ̄(x̂p)− φ̂p

)2

. To achieve this, we replace the interpolant φ̄ in a cell C by a

modified interpolant defined by

φ̄mod = argmin
φ∈H

(
α

|P|
∑
p∈P

(
φ(x̂p)− φ̂p

)2

+
β

∆xd

∫
C

(
φ(~x)− φ̄(~x)

)2
d~x

)
(3.10)

where α and β are weights, H is the set of all Hermite interpolants on cell C

and |P| is the number of particles in that cell. The first term in (3.10) ap-

proaches the interpolant from the particles, and the second term restricts the

modified interpolant from being too far from the initial interpolant. Note also

the factor 1
∆xd

that makes both terms unitless. The following lemma solves

the minimisation problem (3.10).

Lemma 1. If the original interpolant φ̄ is represented by a linear combination

of k basis functions wi by φ̄(~x) = ā · (w1(~x), ..., wk(~x))T , ā ∈ Rk, then the

solution of (3.10) is φ̄mod(~x) = āmod · (w1(~x), ..., wk(~x))T where

āmod =

(
α

|P|
∑
p∈P

ŵpŵ
T
p +

β

∆xd
W

)−1(
α

|P|
∑
p∈P

ŵpφ̂p +
β

∆xd
Wā

)
(3.11)

and where

ŵp := (w1(x̂p), ..., wk(x̂p))
T

ā := (ā1, ..., āk)
T

āmod :=
(
āmod

1 , ..., āmod
k

)T
Rk×k 3 W :=

{∫
C

wi(~x) wj(~x) d~x

}
i=1:k
j=1:k

38

Proof. We directly have from (3.10) that

φ̄mod = argmin
φ∈H

α

|P|
∑
p∈P

(
φ(x̂p)

2 − 2φ(x̂p)φ̂p + φ̂2
p

)
+

β

∆xd

∫
C

(
φ(~x)2 − 2φ(~x)φ̄(~x) + φ̄(~x)2

)
d~x (3.12)

φ̄mod = argmin
φ∈H

α

|P|
∑
p∈P

(
φ(x̂p)

2 − 2φ(x̂p)φ̂p

)
+

β

∆xd

∫
C

(
φ(~x)2 − 2φ(~x)φ̄(~x)

)
d~x (3.13)

since φ̂2
p and

∫
C φ̄(~x)2d~x do not depend on φ. Writting the minimisation in

term of the weights ā, we get

āmod = argmin
a

α

|P|
∑
p∈P

(k∑
i=1

aiwi(x̂p)

)2

− 2

(
k∑
i=1

aiwi(x̂p)

)
φ̂p

+

β

∆xd

∫
C

(k∑
i=1

aiwi(~x)

)2

− 2

(
k∑
i=1

aiwi(~x)

)(
k∑
i=1

āiwi(~x)

) d~x (3.14)

= argmin
a

α

|P|
∑
p∈P

((
k∑
i=1

k∑
j=1

aiajwi(x̂p)wj(x̂p)

)
− 2

(
k∑
i=1

aiwi(x̂p)

)
φ̂p

)

+
β

∆xd

∫
C

((
k∑
i=1

k∑
j=1

aiajwi(~x)wj(~x)

)
− 2

(
k∑
i=1

k∑
j=1

aiājwi(~x)wj(~x)

))
d~x

= argmin
a

α

|P|
∑
p∈P

((
k∑
i=1

k∑
j=1

aiajwi(x̂p)wj(x̂p)

)
− 2

(
k∑
i=1

aiwi(x̂p)

)
φ̂p

)

+
β

∆xd

((
k∑
i=1

k∑
j=1

aiaj

∫
C

wi(~x)wj(~x) d~x

)
− 2

(
k∑
i=1

k∑
j=1

aiāj

∫
C

wi(~x)wj(~x) d~x

))

= argmin
a

α

|P|
∑
p∈P

(
aT ŵpŵ

T
p a− 2aT ŵpφ̂p

)
+

β

∆xd
(
aTWa− 2aTWā

)
(3.15)

39

= argmin
a

aT

[
α

|P|

(∑
p∈P

ŵpŵ
T
p

)
+

β

∆xd
W

]
a

+ aT

[
−2

α

|P|

(∑
p∈P

ŵpφ̂p

)
− 2

β

∆xd
Wā

]
(3.16)

Note that by construction the matrix

[
α

|P|

(∑
p∈P ŵpŵ

T
p

)
+

β

∆xd
W

]
is posi-

tive definite since, from (3.14), we see that aT
[
α

|P|

(∑
p∈P ŵpŵ

T
p

)
+

β

∆xd
W

]
a

represents a sum of squares. It is thus invertible, and the quadratic minimiza-

tion (3.16) is solved as usual by

āmod = −1

2

[
α

|P|

(∑
p∈P

ŵpŵ
T
p

)
+

β

∆xd
W

]−1 [
−2

α

|P|

(∑
p∈P

ŵpφ̂p

)
− 2

β

∆xd
Wā

]

=

[
α

|P|

(∑
p∈P

ŵpŵ
T
p

)
+

β

∆xd
W

]−1 [
α

|P|

(∑
p∈P

ŵpφ̂p

)
+

β

∆xd
Wā

]
(3.17)

Note that if no particle fall in a given cell, the modified interpolant does

not change. We therefore do not have to worry about particle management

during a simulation as was the case with the methods presented in sections

3.1.1 and 3.1.2.

We now show some results using the hybrid least squares method.

Swirl test

This test uses a 2D divergence-free deformation field defined by

u(x, y, t) = cos

(
πt

8

)
sin2(πx) sin(2πy)

v(x, y, t) = − cos

(
πt

8

)
sin2(πy) sin(2πx)

40

on the domain [0, 1]× [0, 1]. This is the classical vortex in a box test found in

[17]. The initial curve is a circle of radius 0.15 centered at (0.5; 0.75). This

velocity induces swirling of the curve until it reaches its maximum elongation,

and then returns it back to its original position in a period of time [16q, 16(q+

1)] for q ∈ N, which will be denoted here as a cycle. We used a 64 × 64 grid

with time step ∆t = ∆x. We place the particles in a band of width 6∆x

around the original interface, with a density of 1 particle per cell, resulting in

a total of 361 particles. The weights used are α = 1 and β = 15. Figure 3–5

shows the results for t = 0, 8 and 16, which corresponds to 0, 0.5 and 1 cycles

of the swirl. The same test was also done using a higher density of particles

of 10 particles per cell for a total of 3610 particles, and results are shown in

figure 3–6.

The results show an important feature of the hybrid method. At t = 8,

the surface is at its most stretched position, and we see that an important part

of the surface is thinner than the grid size. The gradient-augmented level set

method does a good job of keeping track of these subgrid structures with its

cubic interpolant, but inevitably loses information over time. In contrast, the

hybrid method is able to recover these lost structures of the surface. Since the

particles are advected independently of the curve, they don’t suffer at all from

the subgrid structures or the interpolation. They are thus capable of retaining

the information in the thin regions, and this information is transfered back

to the interpolant. This shows that the interpolation error of the gradient-

augmented level set method is partially compensated by the use of the particle

information. The results at t = 16 show that having this supplementary

information drastically improves the representation of the curve in time.

41

The results of figure 3–5 show that even with a few particles, the tracking

of the interface is improved. But with a higher density, as in figure 3–6, the

results are improved. First of all, when comparing the two cases for 0.5 cycles

(middle figures), we see that the thin tail of the surface gains a lot of precision

from the additional particles. Also, after one complete cycle (bottom figures),

we see that the surface with few particles has some wrinkles in its upper left

region. These wrinkles completely disappear when using a higher density of

particles.

The hybrid method is even more beneficial for longer periods of time. As

seen in figure 3–7, the GALS method loses information about the interface

everytime it goes through a large stretch, and the method cannot retrieve the

lost information. The results of figure 3–7 show that for 9.5 and 10 cycles, the

interface advected by the GALS method progressively loses accuracy, while

the hybrid method keeps the interface intact.

Zalesak’s circle test

We consider in this section the 2D rigid rotation of a slotted disk around

the point (0.5; 0.5) in the domain [0, 1]× [0, 1], as proposed by [28]. The initial

surface is a circle of radius 0.15 centered at (0.5; 0.75) with a slot of width 0.05

and length 0.25. The rotation is induced by the velocity field ~u = (u, v) where

u(x, y, t) =
2π

628

(
1

2
− y
)

v(x, y, t) =
2π

628

(
x− 1

2

)
.

Tests were done on a 64 × 64 grid and a time step ∆t = 1, so that the circle

completes a full revolution in 628 steps. We used a density of 10 particles per

cell spread uniformly on a disk of radius one cell larger than the one in the

initial surface. Results are shown in figure 3–8 for 0, 5, 10 and 100 revolutions.

42

The results show how the particles help to preserve the shape of the slot-

ted disk, especially in regions with sharp corners. The interpolation step using

cubic polynomials tends to smooth those regions, but the particle representa-

tion doesn’t lose these structures over time. Modifying the interpolant thus

allows to recover the correct shape of the surface. The results after 100 rota-

tions are especially remarkable, since the original method loses all trace of the

slot, while the solution from the hybrid method is almost perfect.

3D deformation field

There is no fundamental difference between the method in two and three

dimensions. We test here the advection of a surface under a divergence free

3D deformation field given by

u(x, y, z, t) = cos

(
πt

2

)
2 sin2(πx) sin(2πy) sin(2πz)

v(x, y, z, t) = − cos

(
πt

2

)
sin(2πx) sin2(πy) sin(2πz)

w(x, y, z, t) = − cos

(
πt

2

)
sin(2πx) sin(2πy) sin2(πz)

This velocity field is found in [17] and combines deformations in the x-y

and the x-z plane. We perform this test on a 50 × 50 × 50 grid. The initial

surface is a sphere of radius 0.15 centered at (0.35, 0.35, 0.35). We compare our

hybrid method with the GALS method. Particles are spread uniformly between

the spheres of radius 0.15− 2∆x and 0.15 + 2∆x centered at (0.35, 0.35, 0.35).

Results are shown in figure 3–9.

The results show improvements qualitatively similar to those from the 2D

swirl test of section 3.2.1. After one cycle, we see that the hybrid method made

a much better job of preserving the surface. Most of the errors come from the

stretching of the surface in the middle region of figures c) and d). This region

43

is very thin and the subgrid structure is partialy lost by the original GALS

method. The hybrid method is once again able to recover the information

from the particles and correct the damage done in this region.

Stability issues

Although the results from the hybrid least squares method are promising,

the method suffers from stability issues. To see this, we look at a 1D inter-

polant. The left side of figure 3–10 shows a 1D interpolant (blue) in a cell

with one particle (red). We apply the modification step on this interpolant

100 times (green curves). The 3 first results are labeled.

We see that the modification step is not a projection, meaning that ap-

plying the step twice does not give the same result as applying it once. This is

a problem, since the modified interpolant can then become very different than

the initial interpolant. Still, the iterations converge, but they converge to an

interpolant that matches the particles exactly without taking into account the

initial interpolant. The speed of this convergence depends on the weights α

and β in (3.10). This is a problem in a situation such as the one shown in the

right part of figure 3–10. The initial interpolant is shown in blue, and 4 parti-

cles (red) are in the cell. The limit solution matches all particles exactly, but

this results in a highly oscillatory solution that is far away from the original

interpolant. This in turns results in unstable simulations if the weight α is too

large compared to β. Prescribing weights that prevent instabilities is difficult

and no clear criterion has been found yet.

3.2.2 Taylor extrapolation from particles

In order to address some of the shortcomings of the original hybrid idea

presented above, we attempt to use particles in a different way. The second

44

original method we present uses particles in a way similar to [6]. Instead of

using particles to modify the GALS interpolant as in the previous section, we

use particles to create a new interpolant, and then choose between the GALS

and the new interpolant. A selection step is added to the original algorithm 2

to get algorithm 4.

Algorithm 4 Solving the transport equation with taylor expansions from
particles

· Define the initial interpolant φ̄0 representing the initial set M .
for t = ∆t to ∞ do
· For all grid points ~x, compute the footpoint x̊ at time t−∆t.
· Create the Taylor interpolant from the particle cloud.
· Choose between the Taylor interpolant and the GALS interpolant.
· Evaluate φ̄(̊x, t−∆t). Copy this value to φ̄(~x, t).
· Create the new interpolant φ̄ from the newly computed data on the grid.
· Increase t by ∆t.

end for

The Taylor interpolant is described here in 1D for simplicity. We begin

with a particle cloud on which we store not only the function values φ̂p = φ(x̂p),

but also the derivatives up to second order. It is important to note that even

though the function values φ̂p do not change over time, the derivatives do and

we need a differential equation to compute the evolution of those derivatives.

This is easily done by taking the corresponding derivatives of equation (3.1)

and more details about solving these new equations can be found in [19]. We

will assume that we know the value of the derivatives ∂̂xφp and ∂̂xxφp at all

time, as well as φ̂p. As was mentioned before, those values are computed by

solving simple ODEs and can therefore be computed very accurately, so we

will suppose they are exact in what follows.

With this extra data, we can build around each particle a Taylor extrap-

olation of φ and use it as an interpolant. The Taylor extrapolation around a

45

particle x̂p is

Tp(x) = φ̂p + ∂̂xφp(x− x̂p) + ∂̂xxφp
(x− x̂p)2

2
+O((x− x̂p)3). (3.18)

When we want to approximate φ at a given footpoint, we have to choose

between the GALS interpolant φ̄ and all the Taylor interpolants Tp. In general,

the Taylor interpolants are only usable if the footpoint falls close enough to

the particle. We therefore use the Taylor interpolant if the footpoint is close

to a given particle, and otherwise we use the GALS interpolant.

We can use the error of the Taylor expansion to have an exact decision

criterion. Using the higher order terms in the Taylor expansion, we know that

|φ(x)− Tp(x)| =
∣∣∣∣∂xxxφ(ξ)

(x− x̂p)3

6

∣∣∣∣ (3.19)

for some ξ between x and x̂p. It might be difficult to evaluate this error, but

assume we at least have an upper bound Cp ≥ |∂xxxφ(ξ)| ∀ ξ ∈ [x, x̂p].

We also need to quantify the error made by the GALS interpolant so we

can choose which interpolant is best. Looking at φ(x) − φ̄(x) as a function

itself, we can Taylor expand it around a particle x̂p to get

|φ(x)− φ̄(x)| (3.20)

≈
∣∣[φ(x̂p)− φ̄(x̂p)

]
+
[
∂xφ(x̂p)− ∂xφ̄(x̂p)

]
(x− x̂p)

+
[
∂xxφ(x̂p)− ∂xxφ̄(x̂p)

] (x− x̂p)2

2
+
[
∂xxxφ(x̂p)− ∂xxxφ̄(x̂p)

] (x− x̂p)3

6

∣∣∣∣
=
∣∣∣[φ̂p − φ̄(x̂p)

]
+
[
∂̂xφp − ∂xφ̄(x̂p)

]
(x− x̂p)

+
[
∂̂xxφp − ∂xxφ̄(x̂p)

] (x− x̂p)2

2
+
[
∂xxxφ(x̂p)− ∂xxxφ̄(x̂p)

] (x− x̂p)3

6

∣∣∣∣ .

46

Define

Ep(x) :=
∣∣∣[φ̂p − φ̄(x̂p)

]
+
[
∂̂xφp − ∂xφ̄(x̂p)

]
(x− x̂p)

+
[
∂̂xxφp − ∂xxφ̄(x̂p)

] (x− x̂p)2

2

∣∣∣∣ . (3.21)

Using the same bound Cp as above, and noticing that ∂xxxφ̄ is constant since

the GALS interpolant is a cubic polynomial, we can use the triangle inequality

to get

E(x)−
∣∣∣∣[Cp − ∂xxxφ̄(x̂p)

] (x− x̂p)3

6

∣∣∣∣ ≤ ∣∣φ(x)− φ̄(x)
∣∣ ≤

E(x) +

∣∣∣∣[Cp − ∂xxxφ̄(x̂p)
] (x− x̂p)3

6

∣∣∣∣ (3.22)

for values of x where E(x)−
∣∣∣[∂xxxφ(ξ)− ∂xxxφ̄(ξ)

] (x−x̂p)3

6

∣∣∣ ≥ 0. Note that this

last inequality is true at least in small neighbourhood of x̂p, unless E(x̂p) = 0,

but in this case the particle and the GALS interpolant agree so any interpolant

we pick will give the same result.

Figure 3–11 helps to put all the pieces together. It shows the different error

curves described above. The postion of the particle x̂p is shown by the dashed

line. Curve 1 (black) shows the error of the Taylor interpolant depending on

the position of x around the particle. Curves 2 (red) and 3 (blue) show the

two bounds given in (3.22) for the error of the GALS interpolant.

The criterion for choosing the interpolant is then very simple : Let S be

the largest interval containing xp such that the error of the Taylor interpolant

is smaller than the lowest bound of the GALS error ∀x ∈ S. We choose the

Taylor interpolant if x ∈ S and use the GALS interpolant otherwise.

47

(a) Initial condition.

(b) 0.5 cycles.

(c) 1 cycles.

Figure 3–5: Hybrid least squares
method. Swirl test with low particle
density for 0, 0.5 and 1 cycle.

(a) Initial condition.

(b) 0.5 cycle.

(c) 1 cycle.

Figure 3–6: Hybrid least squares
method. Swirl test with high particle
density for 0, 0.5 and 1 cycle.

48

(a) 9.5 cycles. (b) 10 cycles.

Figure 3–7: Hybrid least squares : Long term result for the swirl test

(a) Initial Condition (b) 5 rotations.

(c) 10 rotations. (d) 100 rotations.

Figure 3–8: Hybrid least squares : results for the Zalesak’s disk test.

49

(a) Initial condition. (b) Initial condition.

(c) 0.5 GALS method. (d) 0.5 cycle hybrid method.

(e) 1 cycle GALS method. (f) 1 cycle hybrid method.

Figure 3–9: 3D deformation test at 0, 0.5 and 1 cycle. Original GALS method
on the left, hybrid least squares method on the right.

50

Figure 3–10: Convergence of the least squares modification. Left: The mod-
ification step is not a projection, and applying it iteratively converges to a
solution that matches the particle exactly without taking the initial inter-
polant into account. Right: The limit solution can be highly oscillatory and
far away from the initial interpolant.

Figure 3–11: Error from Taylor and GALS interpolants. Curve 1 (black) shows
the error from the GALS interpolant. Curves 2 and 3 show the error bounds
of the Taylor interpolant from equation (3.22)

51

CHAPTER 4
Set transport through diffeomorphisms

In this chapter, we present the characteristic mapping (CM) method, a

novel grid-based method to solve the transport equation (2.14). The main idea

of the method is that instead of transporting a set directly, we compute the

transformation map of the whole domain. Unlike the methods presented in

chapters 2 and 3 which only allowed to advect smooth manifolds, the charac-

teristic mapping method can transport any set in a vector field.

This idea has already been used for small elastic deformations [13], but

our method applies to more general contexts. The evolution of a mapping of

the domain was also used in work by Pons [21], but their mapping is used to

advect parametric information about the set and not the set itself. In our case,

the advection of the set is completely encapsulated in the transformation map.

We also use a remapping idea that is related to the one presented in [15].

Some aspects of the method come from the following consideration. In

many applications, the vector field ~u retains relatively low frequency structures

over time while the deformed set develops very fine and high frequency struc-

tures. Figure 4–1 shows such a situation, where the vector field is constant

and smooth across the domain, but the initial circle gets deformed in a very

fine structure. This discrepancy between the behaviors of the vector field and

the set inspired the idea of using different grid sizes to represent each of them.

52

Figure 4–1: Smooth vector field inducing sharp structures. Even if the vector
field is constant and smooth, it deforms the initial circle into a very sharp
structure.

4.1 Mathematical formulation

We begin by presenting the formulation used by the characteristic map-

ping method on a regular Cartesian grid in a domain U ⊂ Rd. Given a vector

field ~u(~x, t), we want to evolve a set defined by a set function S0(~x). A special

case of this is when S0 is a level set function representing a smooth manifold

as defined by (2.8), but in general we do not impose any restriction on the set

function S0.

Assume we have a diffeomorphism ~χ0(~x, t) : U → U such that for any

initial point ~x(t = 0) ∈ U being evolved under the vector field ~u, we have

~χ0(~x(t), t) = ~x(0). (4.1)

Such a diffeomorphism is depicted in figure 4–2. Under ~u, the set initially

defined by S0 is evolved to a final time T as S(~x, T) = S0(~χ0(~x, T)).

Note that this evolution can be decomposed into an arbitrary number of

steps. We can subdivide the interval [0, T] into n subintervals [τ0, τ1], . . . , [τn−1, τn]

where τ0 = 0 and τn = T . Define n diffeomorphisms ~χi(~x, t), i ∈ {1, . . . , n}

such that ~χi(~x(t), t) = ~x(τi−1) ∀t ∈ [τi−1, τi]. By doing so, we have at the final

53

Figure 4–2: The diffeomorphism ~χ0 takes a points ~x at time t and returns its
original position at time t = 0.

time T that

~χ0(~x, T) = ~χ1(~χ2(. . . ~χn(~x, τn) . . . , τ2), τ1). (4.2)

The ~χi and the τi need to be defined properly. First, we turn our attention

to the mappings ~χi. Each mapping ~χi(~x, t) is formally defined as the solution

of the advection problem

∂~χi
∂t

+ ~u · ∇~χi = 0 ∀ t ≥ τi−1, x ∈ U (4.3a)

~χi(~x, τi−1) = ~x. (4.3b)

To solve these equations numerically, we use the gradient augmented level set

method presented in section 2.2.2. The equations (4.3a) are solved on grids

having Nc cells per dimension (Nd
c total cells).

For the first mapping i = 1, the starting time τ0 = 0 is known, so we

can start by solving (4.3a) for ~χ1. Note that since the initial condition (4.3b)

is linear, it is exactly represented by the Hermite cubic basis. However, this

property may be violated after some time under the flow defined in (4.3a).

This depends on specific characteristics of the velocity field ~u. To control the

54

induced representation errors, we want to be able to detect situations where

the interpolation error of ~χ1 becomes larger than a predefined tolerance E1. To

evaluate this error, we use Lagrangian particles x̂p(t), p ∈ {1, . . . ,m}, initially

distributed uniformly in U at positions x̂ 0
p . Those particles are independently

evolved under ~u by solving the set of ODEs

∂x̂p(t)

∂t
= x̂p(t) ∀ t ≥ 0 ∀ p ∈ {1, . . . ,m} (4.4a)

x̂p(0) = x̂ 0
p . (4.4b)

Note once again that (4.4a) can be accurately solved by using a sufficiently high

order Runge-Kutta solver. In practice, we use the same integration scheme as

for the GALS method, i.e. RK3. Note that when solving (4.3a), each step

of the GALS method produces two errors, one due to the approximate time

integration and the other due to interpolation :

GALS error per step = O(4t4)︸ ︷︷ ︸
time integration

+ O(4x4)︸ ︷︷ ︸
Hermite interpolation

. (4.5)

By using the same O(4t4) time integration scheme to solve (4.4a) for particles

x̂p, a measure of the accumulated interpolation error is given by

M1(~χ1(~x, t), t) := max
p
||~χ1(x̂p(t))− x̂ 0

p ||. (4.6)

Equiped with the error measure M1, we define τ1 as the first time at which

the evolution of ~χ1 induces a representation error greater than E1, that is

M1(~χ1(~x, τ1 −4t), τ1 −4t) ≤ E1 < M1(~χ1(~x, τ1), τ1). (4.7)

At this time, we stop evolving ~χ1. Notice that choosing E1 sufficiently small

ensures that ~χ1 is still well represented by the Hermite cubic interpolant at

t = τ1. Consequently, we may oversample ~χ1 onto a finer grid with Nf cells

55

per dimension (Nd
f total cells) by naturally using the Hermite cubic structure

of the GALS. We call this finer representation ~χ0, because it will gradually

become the global transformation defined in (4.1).

For all subsequent steps, we construct the mapping ~χ0 recursively. When

τi−1 is determined, (4.3a) defines the next mapping ~χi. We solve for ~χi and

define τi as the first time when M1(~χi(~x, τi), τi) > E1. At this time, we stop

computing the evolution of ~χi, we update ~χ0 by

~χ0(~x)← ~χ0(~χi(~x, τi)). (4.8)

and we continue with the evolution of ~χi+1. Every update of ~χ0, either by the

first oversampling of ~χ1 or by (4.8), is called a remapping step. Finally, at time

τn, ~χ0 is the mapping defined in (4.2) and we have S(~x, T) = S0(~χ0(~x, T)), as

wanted.

Remark 1. Taking Nf large enough ensures that the composition of mappings

in (4.8) stays well represented in ~χ0 by the Hermite cubic basis for all time.

Remark 2. At any intermediate time t ∈ [τi−1, τi], the evolved set can be

evaluated by

S(~x, t) = S0(~χ0(~χi(~x, t− τi−1))). (4.9)

Remark 3. With the progressive construction of ~χ0, the final time T doesn’t

need to be known in advance. The evolution can continue for as long as desired.

Remark 4. To ensure the particles are always spread uniformly over the domain

U , we reinitialize their position at every remapping step, that is x̂p(τi−1) = x̂ 0
p .

In the next section, we discuss in more detail the implementation of the

CM method.

56

4.2 Numerical implementation

In this section, we detail the numerical implementation of the method

described in section 4.1. The first subsection describes the use of a dynamic

grid for ~χ0 and the second summarizes the CM method in pseudo-code for ease

of implementation.

4.2.1 Dynamic grid resolution

Given that the grid on which ~χ0 lives is fine enough, all the details of

the transformation induced by the vector field ~u can be well represented by

the CM method up to an arbitrary time. However, representation problems

during a remapping step can arise because in equation (4.8), the right hand

side ~χ0 ◦ ~χi is a function that can be inadequately represented by the Hermite

interpolant of the GALS, even though ~χ0 and ~χi are accurately represented

on the fine grid. To ensure that the grid is always fine enough to represent

~χ0 ◦ ~χi, we can dynamically modify the resolution of the Nd
f grid used for ~χ0.

To do so, we do not immediately update ~χ0 by (4.8) when a remapping

time τi is reached. Instead, we compute the remapping in a temporary Hermite

cubic interpolant ~χ temp
0 living on the same Nd

f grid. This is done by evaluating

~χ temp
0 (~x) = ~χ0(~χi(~x, τi − τi−1)). (4.10)

Now, for an arbitrary point ~x that does not live on theNd
f grid, |~χ temp

0 (~x)−

~χ0(~χi(~x, τi − τi−1))| will in general be non-zero. Therefore, the measure

M2(~χ temp
0) := ||~χ temp

0 − ~χ0 ◦ ~χi||∞ (4.11)

57

will be large if the interpolant ~χ temp
0 does not represent ~χ0 ◦ ~χi accurately

enough. Consequently, we decide to redefine ~χ0 on a (2Nf)
d grid ifM2(~χ temp

0) ≥

E2, where E2 is a predefined tolerance.

Conversely, we want to take advantage of situations where the fine grid

could be coarsened. To detect such situations, we define another interpolant

~χ coarse
0 on a coarser

(
Nf

2

)d
grid and compute (4.10) on this new grid. If for this

coarser mapping we have M2(~χ coarse
0) ≤ E2, it means that the coarser mapping

is sufficiently accurate to represent ~χ0 ◦ ~χi. In this case, we redefine ~χ0 on a(
Nf

2

)d
grid.

Once the size of the fine grid for ~χ0 is set, we apply the remapping step

defined in (4.8) as before. Using a dynamic grid has two main advantages.

By refining the grid when needed, we ensure that the transformation is always

well represented, and by coarsening it when possible, we reduce the compu-

tational time required to do a remapping step. Note that the redefinition of

~χ0 on a different grid is easily performed at low cost due to the Hermite cubic

interpolant structure.

4.2.2 Pseudo-code algorithm

We summarize here the CM algorithm with the modification discussed in

section 4.2.1. Additionally, the following two minor adjustments are done for

convenience and efficiency.

First, we start by defining ~χ0 on the Nd
f grid and initialize it to ~χ0(~x) = ~x.

By doing so, the first remapping can be treated just like all the following

remappings by equation equation (4.8).

Second, we observe that the mappings ~χi are only used between times τi−1

and τi. Therefore, we can apply the CM method using only one mapping ~χ

58

in place of all the different mappings ~χi. To do so, solve equation (4.3a) for ~χ

instead of ~χi and reset ~χ(~x) = ~x when a remapping time τi is reached.

The resulting procedure is described in algorithm 5

Algorithm 5 The characteristic mapping method

Define ~χ(~x) = ~x on a coarse Nd
c grid, ~χ0(~x) = ~x on a fine Nd

f grid. S0 is
given.
for t = 0 to T do

Advect ~χ using the GALS method and advect particles using RK3 (eq.
(4.3a) and (4.4a)).
if M1(~χ) > E1 then
~χ temp

0 (~x)← ~χ0(~χ(~x))
~χ(~x)← ~x
x̂p ← x̂ 0

p

if M2(~χ temp
0) > E2 then

Nd
f ← (2Nf)

d

~χ0(~x)← ~χ0(χ(~x))
else
~χ coarse

0 (~x)← ~χ0(~χ(~x)) on a grid 2 times coarser
if M2(~χ coarse

0) < E2 then

Nd
f ← (

Nf

2
)d

~χ0(~x)← ~χ0(~χ(~x))
else
~χ0(~x)← ~χ temp

0 (x)
end if

end if
end if

end for

4.3 Numerical examples

In this section, we evaluate the accuracy and performance of the CM

method. We use a grid of Nc cells per dimension for the advection of ~χ and

a grid of Nf cells per dimension to store ~χ0. We will often compare the CM

method to the GALS method, which will use a single grid having Ng cells per

dimension.

59

We present standard benchmark tests in 2D and 3D in section 4.3.1 and

4.3.2. We then apply the CM method to more complicated sets in section 4.3.4

and 4.3.3. Finally, we present accuracy and efficiency results for the method

in section 4.3.5.

4.3.1 2D swirl test

We apply the characteristic mapping method to the 2D case of the vector

field ~u(~x, t) = {u(x, y, t), v(x, y, t)} defined by

u (x, y, t) = cos

(
πt

A

)
sin2 (πx) sin (2πy) (4.12a)

v (x, y, t) = − cos

(
πt

A

)
sin2 (πy) sin (2πx) (4.12b)

with A = 16 in the domain [0, 1]× [0, 1]. This is the same vortex in a box as

in section 3.2.1. The initial set is a circle of radius 0.15 centered at (0.5, 0.75)

represented by a level set function. From times t = 0 to t = 16, this flow will

stretch the circle in a thin swirl and return it back to its original position. We

use a N2
c = 322 grid for the advection and a dynamic-sized fine grid for the

remapping. This fine grid starts at N2
f = 322 and is refined to a maximum

resolution of N2
f = 5122. The remapping and resizing tolerances were set to

E1 = 5× 10−6 and E2 = 10−4. The results are shown in figure 4–3.

The initial identity transformation is perfectly represented on the 32 ×

32 grid, but as time advances, the flow creates very fine structures. The

transformation at t = 8 would definitely not be well represented on a 32× 32

grid. But since the grid is adaptative, the remapping grid is refined as the

transformation stretches the initial set. The grid for ~χ0 reaches a size of

512 × 512 at t = 8, which is sufficient to represent correctly the difficult

transformation induced by the vector field. Then as the spiral goes back to its

original shape, the grid coarsens from t = 8 to t = 16. At this final time, the

60

(a) t = 0, Nf = 32 (b) t = 4, Nf = 256 (c) t = 8, Nf = 512

(d) t = 12, Nf = 256 (e) t = 16, Nf = 16

Figure 4–3: 2D swirl test using the characteristic mapping method with dy-
namic grid (i.e. Nf varies in time). Advection is done on a N2

c = 322 grid and
remapping is done on a fine grid of maximal size N2

f = 5122.

61

Computational Time (sec.)

Method
Nf or Ng

32 64 128 256

GALS 2 12 92 727
CM with Nc = 32 6 7 9 11

Table 4–1: Time comparison (in seconds) of the GALS and CM methods for
the swirl test (same test as in figure 4–4). The GALS method is advected on
the given grid sizes (Ng). The CM method uses a N2

c = 322 grid for advection
in all four cases, but the remapping is done on grids of the given sizes (Nf).

transformation only needs a 16 × 16 grid to be correctly represented. We see

that the initial circle is recovered at the final time, even though the advection

was computed on the rather coarse 32 × 32 grid and only a few remapping

steps involved finer grid calculations.

We use a similar test to compare the characteristic mapping method with

the standard GALS method. We use the same initial set and transport it in

the vector field (4.12a)-(4.12b) with A = 8 until t = 16, which corresponds to

the set being stretched and returned to its original position twice. We make

four different tests by modifying the grid sizes. For the CM method, we use a

N2
c = 322 for all tests but we set the maximal grid size to different values. We

start for each of the four tests with Nf = 32 and allow the grid to be refined

up to Nf = {32, 64, 128, 256} respectively. For the GALS method, we fix the

grid resolution to be the same as for the finest possible remapping grid of the

CM method, i.e. Ng = {32, 64, 128, 256}. Results are shown in figure 4–4.

We see that for a given grid size, the characteristic mapping method gives

a better solution than the GALS method. This is in part due to the fact that

the CM method is initially advecting a linear transformation (~χ(t = 0, ~x) = ~x)

while the GALS method is advecting the more complicated level set function

representing the circle. This explains why the CM solution is more accurate

62

(a) GALS, Ng = 32 (b) CM, Nc = 32, Nf ≤ 32 (c) GALS, Ng = 64 (d) CM, Nc = 32, Nf ≤ 64

(e) GALS, Ng = 128 (f) CM, Nc = 32, Nf ≤ 128 (g) GALS, Ng = 256 (h) CM, Nc = 32, Nf ≤ 256

Figure 4–4: Comparison of the GALS and CM methods for different grid
sizes. For the CM method, advection is always done on a N2

c = 322 grid but
the remapping grid is dynamically refined up to Nf = {32, 64, 128, 256} in
figures (b), (d), (f) and (h) respectively. The GALS uses the fixed grid Ng =
{32, 64, 128, 256} in figures (a), (c), (e) and (g) respectively. The computed
solution is shown in black and the exact solution is shown in red.

63

even if the remapping is done on the same grid as the advection grid (as in

figures 4–4(b) compared to figure 4–4(a)).

We also see that when the remapping grid is fine enough (as in figures

4–4(f) and 4–4(h)) the CM method is able to represent the transformation

rather accurately and no significant error is accumulated. Therefore, the final

transformation stored in ~χ0 is smooth and very close to the identity transfor-

mation, which is represented sufficiently well on an 8× 8 grid with our choice

of E1 and E2. If the remapping grid is limited in its refinements as in 4–4b)

and 4–4d), more error accumulates over time and the final transformation is

not as close to the identity transformation, and thus a finer grid has to be

maintained to represent the computed transformation.

A particularly attractive feature of the CM method is how computational

time is in a sense optimized by the separation between coarse grid advection

calculations (frequent but cheap) and fine grid storage operations on ~χ0 (costly

but infrequent). Table 4–1 compares the computational times for the GALS

and CM method. For very coarse grids, the CM method is slower because it

has to solve an advection problem for each dimension of the transformation.

But for the more interesting case of an interpolation grid that is significantly

finer than the advection grid (e.g. for a 256 × 256 remapping grid and a

32×32 advection grid), the CM method is clearly faster. The efficiency aspect

is studied in more details in section 4.3.5.

4.3.2 3D deformation field

Since the characteristc mapping method solves (4.3a) independently for

each dimension, there is no difficulty in implementing the method in any num-

ber of spatial dimension. We apply the CM method to the 3D case of a sphere

of radius 0.15 centered at (0.35, 0.35, 0.35) in the domain [0, 1]3 and deformed

64

under the vector field ~u(~x, t) = {u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)}, where

u(x, y, z, t) = 2 cos

(
πt

2

)
sin(πx)2 sin(2πy) sin(2πz) (4.13a)

v(x, y, z, t) = − cos

(
πt

2

)
sin(2πx) sin(πy)2 sin(2πz) (4.13b)

w(x, y, z, t) = − cos

(
πt

2

)
sin(2πx) sin(2πy) sin(πz)2. (4.13c)

This standard velocity field is the same as in section 3.2.1. The advection of ~χ is

done on a N3
c = 163 grid, and the remapping of ~χ0 is done on a fixed N3

f = 1283

grid with a remapping tolerance E1 = 10−4. We compare the results with and

without remapping to demonstrate the benefits of the remapping step. We

also compare the CM method to the GALS method computed on a N3
g = 1283

grid. Results for t = 0, t = 1 and t = 2 for the three cases are shown in figure

4–5.

The surface at t = 2 is expected to be identical to the surface at t = 0

(sphere) due to the cos(πt
2

) term in equations (4.13). This vector field causes

the sphere to be stretched along the y = 1 − x plane and thus creates very

fine structures that cannot be represented on the coarse 163 grid. We see

from figure 4–5(d) that without remapping, those structures are indeed not

well represented and oscillations are observed on the scale of the coarse grid.

Those oscillations distort the surface for all subsequent times, and the final

shape in figure 4–5(g) is significantly different than the initial sphere.

When using the remapping on the fine grid, the fine structures caused by

the deformation field can be accurately represented as a result of storing ~χ0 on

a N3
f = 1283 grid. In figure 4–5(e), the width of the stretched surface is of the

order of the fine grid’s cell width, therefore causing no major representation

issues. At t = 2 (figure 4–5(h)), the surface is visually identical to the initial

sphere.

65

(a) CM without remapping,
t=0

(b) CM with remapping, t=0 (c) GALS, t=0

(d) CM without remapping,
t=1

(e) CM with remapping, t=1 (f) GALS, t=1

(g) CM without remapping,
t=2

(h) CM with remapping, t=2 (i) GALS, t=2

Figure 4–5: 3D deformation of a sphere. Left: CM on a N3
c = 163 grid without

remapping. Middle: CM on a N3
c = 163 grid with remapping on a N3

f = 1283

grid. Right: GALS on a N3
g = 1283 grid.

66

Method Computational Time (sec.)

CM without remapping 267
CM with remapping 1430

GALS 29687
Table 4–2: Time comparison (in seconds) of the GALS and CM methods with
and without remapping for the 3D deformation test of figure 4–5. We use
Nc = 16 and Nf = Ng = 128.

The GALS method also uses a N3
g = 1283 grid and is therefore able

to capture the same level of detail as the characteristic mapping method with

remapping. The main difference between both methods is that the error due to

interpolation present in the CM method is kept in check due to the remapping

strategy. This can be observed by comparing figures 4–5(e) and 4–5(f) where

the solution is not significantly different, while after a longer time (figures 4–

5(h) and 4–5(i)), the accumulated interpolation error shows as a small kink

for the GALS case.

The CM method is also interesting for its computational efficiency. Table

4–2 compares the time taken to compute the three tests of figure 4–5. As

expected, the time taken by the CM method without remapping is small,

but the results are not accurate. The time taken by the CM method with

remapping is approximately 5 times larger than without remapping, but the

results we obtain are almost perfect. The GALS method takes about 20 times

longer than the CM method with remapping to compute its solution, and the

results are worse. This again shows the superior efficiency of the CM method

over the GALS method. This aspect is studied in more details in section 4.3.5.

4.3.3 Complicated sets

We show in this section that the characteristic mapping method can be

used to advect arbitrarly complex sets by presenting two different tests. For

67

the first test, we take the deformation field ~u(~x, t) = {u(x, y, t), v(x, y, t)} given

by

u (x, y, t) = cos

(
πt

A

)(
−1

4
L (x) sin2

(
3

2
πx

)
sin (4πy) +

3

4
R (x) (x− 0.5)

)
(4.14a)

v (x, y, t) = cos

(
πt

A

)(
1

4
L (x) sin2 (2πy) sin (3πx) +

3

4
R (x) (y − 0.5)

)
(4.14b)

with A=16 and where L and R are smooth weight functions defined by

R (x) = sin
(
π
(
4x2 − 5x3 + 2x4

))
sin (πy) (4.14c)

L (x) = sin
(
π (1− x)3) sin (πy) sin

(
3

2
πx

)
sin2 (2πy) . (4.14d)

This vector field causes the left region to swirl into two vortices and the right

region to expand around the center of the domain. We apply this vector field

the the Mandelbrot set and compute the advection of the set with the CM

method. We use Nc = 32 for the coarse grid, Nf = 1024 for the fine grid and

a remapping tolerance E1 = 10−7. Note that we did not use a dynamic grid

resolution for this test. The results at times t = 0 to t = 16 are shown in figure

4–6.

As the set evolves, the centeral region is enlarged to the right and addi-

tional details of the set appear. Since we know the initial set with arbitrary

precision, there is no problem capturing all those details. Doing a similar test

with usual level set methods would be impossible since the level set function

describing the Mandelbrot set is extremely hard to represent numerically, while

representing the smooth transformation with level set functions is very easy.

Also, having a numerical representation of the Mandelbrot set on a fine grid

68

(a) t=0 (b) t=2 (c) t=4

(d) t=6 (e) t=8 (f) t=10

(g) t=12 (h) t=14 (i) t=16

Figure 4–6: 2D deformation of the Mandelbrot set computed with the CM
method with an advection grid of N2

c = 322 and a fixed remapping grid of
N2
f = 10242. The zoomed regions in figures (a) and (i) correspond to a single

grid cell of the fine grid.

69

would not allow to represent the new details that appear during the transfor-

mation. Apart from a few exceptions where the transformation has developed

structures that fall under the grid size during the transformation, we recover

the initial surface with great precision.

For the first and last frame, we enlarged one of the grid cells of the 1024×

1024 grid by evaluating the Hermite interpolant at many additional locations.

This cell is in the region that is most affected by the deformation in the left

side of the domain. We see that even though this is a difficult test that causes

a lot of stretching, the identity transformation is recovered accurately. Even

by using the computed transformation to draw some very fine details of the

set (i.e. much finer than the fine grid size), no significant qualitative difference

is oberved.

The second test involves open curves. Numerically, these objects are chal-

lenging since they are hard to precisely represent on a grid. Still, we would

like to have a formulation that allows computations of normals and curvature

on a regular grid. A simple solution is to represent such open curves using

two set functions, where one is used as a mask function. Figure 4–7 shows an

example where we advect three independent open curves forming a triple point

with open ends, along with a closed circle. These objects are transported in

the swirling velocity field (4.12) with A = 4. Each part of the curve is defined

as a straight line enclosed in a mask region. Both the line and the mask are

defined by simple level set functions. Since the CM method decouples the

advection from the initial set, we can advect those seven set functions (three

planes, three masks and one cone) at the same time at the only additional cost

of a single interpolation evaluation step on the fine grid for every set function,

only when plotting is required.

70

(a) t=0 (b) t=2 (c) t=4

Figure 4–7: 2D deformation of open curves. Each of the three branches (black)
is defined by a linear level-set function enclosed in a mask set, also defined by
another level-set function. The circle is also represented by a level set and is
colored green to keep track of its interior.

4.3.4 Triple and quadruple points mosaic

We show another test to emphasize the advantages of using a diffeomor-

phism formulation. We take the [0, 1]× [0, 1] domain with periodic boundary

and subdivide it into multiple regions. This kind of initial situation can arise,

for instance, in simulation of multiphase flows. A difficulty of these simula-

tions resides in the triple point caused by the junction of three different fluids.

Triple points are hard to represent using a single level set function, but can be

represented as multiple piecewise level sets. In the context of the CM method,

this is not a problem since we can transport many functions at the same time.

The velocity field used for this test is

u (x, y, t) = cos

(
πt

2

)
cos

(
2yπ + 2 sin

(
2 cos2

(
πt

2

)))
(4.15a)

v (x, y, t) = cos

(
πt

2

)
sin

(
2xπ + 2 sin

(
cos2

(
πt

2

)))
(4.15b)

and we used Nc = 32 and Nf = 512. It took 65 seconds to compute the 2048

steps of this simulation on a single 3.0GHz CPU, taking 0.008 seconds for

a regular step and 0.45 seconds when remapping, which was necessary about

every 12 steps on average. We also highlight three regions in the domain. These

71

regions represent two triple points and one quadruple points. The dashed

circles are transported in the flow as passive particles. Doing so emphasizes

the fact that the intersections follow the right paths. Also, they show that

even if some regions are transformed into very thin filaments, we can still

track them in the flow. For instance, the highlighted region around the purple-

yellow-green intersection (bottommost circle in figures 4–8(a) and (i), topmost

in other subfigures) shows that even if we visually lose the intersection at time

t = 1, it returns to its original position at time t = 2.

4.3.5 Computational efficiency

We analyse here the computational effort required by the CM method

and compare it to the cost of the GALS method. The figures presented in

this section use the swirl test presented in section 3.2.1 wth A = 8 and a final

time T = 16. To facilitate the interpretation of the results, we do not use a

dynamic fine grid and set 4t = 1/Nf . We use Nc = 32 for all computations,

and the values of Nf and Ng vary on the graphs. We compare those costs for

one advection step.

For the GALS method, the cost is that of tracing back the footpoints, and

then evaluating the interpolant at those locations. This cost can be expressed

as

cost GALS = C1N
d
g︸ ︷︷ ︸

footpoints

+ C2N
d
g︸ ︷︷ ︸

interpolation

(4.16)

for some constants C1 and C2, and where d denotes the dimension and Ng is

the number of grid cells for each spatial dimensions, as before.

For the CM method, we also need to trace back the footpoints and in-

terpolate the function, but that is done on the coarse Nd
c grid and has to be

72

(a) t=0 (b) t=0.25 (c) t=0.5

(d) t=0.75 (e) t=1 (f) t=1.25

(g) t=1.5 (h) t=1.75 (i) t=2

Figure 4–8: 2D deformation of a periodic mosaic pattern. The advection grid
has N2

c = 322 with a fixed remapping grid of N2
f = 10242. Three regions are

highlithed and tracked as passive particles.

73

done independently for each dimension. Additionally, we need to advect the

particles and sometimes do a remapping step. If we do a remapping after M

advection steps, the cost for the CM method can be expressed as

cost CM = dC1N
d
c︸ ︷︷ ︸

footpoints

+ dC2N
d
c︸ ︷︷ ︸

interpolation

+C1γN
d
c︸ ︷︷ ︸

particles

+ (1/M)dC2(Nd
f +Nd

c)︸ ︷︷ ︸
remapping

(4.17)

where γ is the number of particles per cell. Note that the remapping part

involves two terms because of the composition in equation (4.8). Note also

that M depends on ~u and E1 in a non-trivial way.

To compare the efficiency of both methods, we take Ng = Nf . We note

directly from (4.16) and (4.17) that if Nc is small enough compared to Nf

and M is large enough, the CM method will perform faster than the GALS

method. We also note that the remapping term is crucial in the analysis of

computational time since it is the only one that contains Nf . This makes it a

costly part of the method since we are interested in regimes where Nf is much

larger than Nc. This implies that M plays an important role in the efficiency

of our method. M depends monotonically on E1 because taking a larger E1

increases the value of M (remapping steps are less frequent), but doing so also

causes the error of the computed transformation to increase. Therefore, for

~u,Nc and Nf given, the choice of E1 determines the trade-off between accuracy

and efficiency. This also suggests that for a given value of the error, there is

an optimal value for E1.

Figure 4–9 shows computational times against grid widths (1/Nf) for dif-

ferent values of E1. The figure confirms that reducing E1 increases the com-

putational time. We also see that if the Nf grid is too coarse, the GALS

method performs faster. This is to be expected since the CM method has to

compute an advection step for each dimension. Therefore, if the Nc grid is of

74

similar size as the Nf grid, the CM method requires more computations, as is

seen in equation (4.16). But if Nf is significantly larger than Nc, the multiple

advection steps are much cheaper to compute than the single GALS step.

Figure 4–10 shows the L2 error of the solution against grid widths (1/Nf) for

different values of E1. The first thing to notice is that the curves for E1 = 10−4

and E1 = 10−5 change their behavior depending on the grid size. Since E1

represents the interpolation error made before each remapping step, we expect

the error curves to stagnate when the error reaches the corresponding values

of E1. Since 4t scales with the grid size, the error due to advection continues

to decrease, which explains a slower decrease of the error in the graphs beyond

this critical point. Secondly, we see that for regions where curves have not

yet reached their critical error, a smaller value of E1 gives a bigger error. This

is expected, because a bigger value for E1 implies more remapping steps, and

these remapping step each produce an interpolation error.

More importantly, figure 4–11 shows the computational times against the

L2 error for different values of E1. From this figure we clearly see the influence

of E1 on computational time and observe that there is an optimal E1 for a given

global error of the solution. If we denote the global error in the solution by

E, we observe once again that taking E1 > E is not an efficient choice. Also,

for values of E1 greater than E, smaller values of E1 give better computational

times. Therefore, our results for this test suggest that a criterion for choosing

E1 optimally is to take E1 to be the desired global error of the final solution.

Another major advantage of the CM method is that it is easily paralleliz-

able. The advection of each dimension of the transformation is independent,

and multiple transported interfaces can be computed separately. Moreover,

since the advection of each grid point is done using the local GALS scheme,

75

Figure 4–9: Time v.s. cell width for the CM method.

the value of the transformation at each grid point can be computed indepen-

dently as well. Also, the remapping step is easily parallelizable beacause it

only requires a Hermite interpolation, which is a local operation. It is not

the aim of this paper to investigate the parallel implementation of the CM

method, but it should be noted that future work in this direction is promising.

76

Figure 4–10: Error v.s. cell width for the CM method.

Figure 4–11: Time v.s. error for the CM method.

77

CHAPTER 5
Application to specific partial differential equations

5.1 Navier-Stokes equations

Fluid simulations are a very important application of set transport. Fluids

are governed by the Navier-Stokes equations. For an incompressible fluid living

in a domain U , the equations are

∂t~u+ ~u · ∇~u = −∇P
ρ

+
µ

ρ
∇2~u (5.1)

∇ · ~u = 0 (5.2)

where

~u :=Velocity of the fluid.

P :=Pressure of the fluid.

ρ :=Density of the fluid.

µ :=Dynamic viscosity of the fluid.

Boundary conditions also have to be added to dictate the behavior of the fluid

on the boundary ∂U of the domain U . We will use here a no slip condition,

i.e. ~u = 0 on ∂U . Note that since the fluid is incompressible, ρ is constant.

We are interested in simulating multiphase flows. A simple example is

the simulation of a volume of water moving in air. We will deal with the 2D

case for simplicity and use the notation ~u(x, y) = (u(x, y), v(x, y)) ∈ R2. A

standard situation is represented in figure 5–1. We will refer to this figure in

what follows.

78

Figure 5–1: Multiphase fluid. A volume of water moves in air in a closed
domain U .

Our goal is to track the boundary Γ between air and water. Evolving

this boundary in time is enough to describe how both the air and the water

move. Many additional conditions have to be imposed on each point of this

boundary for it to move in a physically correct way. We list them here with

a brief explanation. We use the jump notation [Q] := Qair − Qwater for any

quantity Q.

• [P − 2µ (∇u ·N,∇v ·N) ·N] = σκ

where σ is the surface tension coefficient and κ is the curvature of the

boundary at a given point. This adds surface tension effects to the flow.

• [µ(∇u ·N,∇v ·N) · T + µ(∇u · T,∇v · T) ·N] = 0.

This indicates that the stress on the surface must be zero.

• [u] = [v] = 0.

The flow must be continuous across the surface.

• [∇u · T] = [∇v · T] = 0.

No slip condition for a moving boundary.

79

• [∂tu+ ~u · ∇u] = [∂tv + ~u · ∇v] = 0.

The flow is transported with the boundary.

To solve the Navier-Stokes equations, we split in time equations (5.1) and

(5.2) by using a projection method. This breaks the equation into smaller parts

that are easier to solve. The method we present here is that of Kang et al.

[14]. We will use the notation ~uk to denote the velocity at time step k, and

similarly for all other variables. Start with a known velocity field, possibly

~u0 = 0. First, take the pressure term out in equation (5.1) and discretize it

using a temporary variable ~u∗ in place of ~uk+1.

~u∗ − ~uk

∆t
+ ~uk · ∇~uk =

µ

ρ
∇2~uk (5.3)

⇒ ~u∗ = ~uk + ∆t

(
µ

ρ
∇2~uk − ~uk · ∇~uk

)
. (5.4)

Note that ~u∗ can be computed easily since ~uk is known. The true value of ~uk+1

will then be computed by adding the pressure term.

~uk+1 − ~u∗

∆t
= −∇P

k

ρ
(5.5)

⇒ ~uk+1 = ~u∗ −∆t
∇P k

ρ
. (5.6)

But the pressure P k is not known. To compute it, we take the divergence of

equation (5.5) to get

∇ ·
(
~uk+1 − ~u∗

∆t

)
= −∇

(
∇P k

ρ

)
(5.7)

⇒ ∇2P k =
ρ

∆t
∇ · ~u∗ (5.8)

where we used ∇ · ~uk+1 = 0. This assumption projects the solution on a

divergence free space. Equation (5.8) requires to solve a Poisson equation

with jump conditions on the entire domain. In order to have a completely

80

Figure 5–2: Ghost fluid method. A derivative is to be evaluated on a grid
point just left of the boundary. Using the jump conditions at the interface, we
translate the values to the right of the interval to create ghost points. We then
use those points to evaluate the derivative using a finite difference scheme.

explicit scheme in time, a time step is computed by solving equations (5.4),

(5.8) and (5.6) in this order.

Note that because of the jump conditions on the water-air interface Γ,

some of the spatial derivatives cannot be evaluated using simple finite differ-

ence schemes. We instead use the ghost fluid method [9] to evaluate those

derivatives. Figure 5–2 illustrates this method in 1D where a derivative needs

to be evaluated less than a grid point to the left of the interface. The right data

points cannot be used to compute the derivative since they represent another

branch of the function. But since we know what the jump is between the left

and right values, we can adjust the right values to create ghost points and use

those points to compute the derivatives using finite difference schemes.

Once the vector field is computed at a given time step, we can use any of

the methods described in chapters 2, 3 and 4 to transport the interface between

the air and the water. However, our attempts at solving the Navier-Stokes

equations are not yet stable. Discontinuities in the solution make the method

difficult to control. A discontinuity can be created for instance when two water

droplets merge. More research needs to be done in order to fully understand

81

the behavior of our new methods in conjunction with the projection method

described here. Still, we were able to do fluid simulations by simplifying the

problem, as described in the next section.

5.2 Euler equations

The 2D Navier Stokes equations are greatly simplified by neglecting the

viscosity term. Doing so gives the Euler equation

∂~u

∂t
+ (~u · ∇)~u+

∇P
ρ

= 0 (5.9)

∇ · ~u = 0 (5.10)

To further simplify the problem, we will look here at a single phase flow in a

periodic box. We can rewrite equation (5.9) in a more convenient form. Define

the vorticity ω := ∇×~u, where ∇× is the curl operator. By taking the curl of

(5.9) and using various vector calculus identities, the Euler equation becomes

∇× ∂~u

∂t
+∇× (~u · ∇)~u+

∇×∇P
ρ︸ ︷︷ ︸

curl of gradient is 0

= 0 (5.11a)

⇒ ∂(∇× ~u)

∂t
+∇×

(
1

2
∇(~u · ~u)− ~u× (∇× ~u)

)
= 0 (5.11b)

⇒ ∂ω

∂t
+∇×∇

(
~u · ~u

2

)
︸ ︷︷ ︸
curl of gradient is 0

−∇× (~u× ω) = 0 (5.11c)

⇒ ∂ω

∂t
+ ~u · ∇ω − ω · ∇~u︸ ︷︷ ︸

∇~u⊥ω

+ω · (∇ · ~u︸ ︷︷ ︸
∇·~u=0

) + ~u · (∇ · ω︸ ︷︷ ︸
div. of curl is 0

) = 0 (5.11d)

which gives the vorticity equation

∂ω

∂t
+ ~u · ∇ω = 0. (5.12)

This equation can be interpreted as a transport equation for the vorticity,

meaning that the vorticity is simply transported in the flow. However, it

82

is very different from the standard transport equation because ω and ~u are

coupled, which makes the problem non-linear. Still, an approximated solution

of this equation can be obtained by decoupling ω and ~u. Note also that the

vorticity equation implicitely takes into account the condition (5.10), so it is

not required to deal with the pressure term to impose a divergence-free flow

as is otherwise done for example in [26].

To solve the vorticity equation, we use the CM method presented in chap-

ter 4. The main reason for this is that the solution of (5.12) is known to be

a diffeomorphism of the initial vorticity distribution [2]. Another reason is

because of the decoupling of scales in the CM method. It allows the flow to

be governed by the large vortices of the flow, while still representing the fine

details of the simulation.

If we know ~uk, we can therefore compute ωk+1 using the CM method. But

computing ~uk from ωk requires some explanations.

Since the flow has to satisfy ∇·~u = 0, it can be represented using a stream

function φ such that

~u =

(
−∂φ
∂y
,
∂φ

∂x

)
. (5.13)

The fact that ~u is representable by such a stream function is justified by the

Hodge decomposition. Conversely, representing ~u by a stream function ensures

incompressibility by construction. This definition leads to the relation

φ = −∆−1ω (5.14)

83

where ∆−1 is the inverse of the Laplace operator. Equation (5.14) is easy to

solve in Fourier space where it becomes

φ̂ =
ω̂

k2
x + k2

y

(5.15)

where ·̂ represents the Fourier transform, and kx and ky are the x and y Fourier

coefficients. See [25] for details. To recover φ, an inverse Fourier transform has

to be computed. We used the FFTW library [10] for all Fourier transforms.

With the separation of scales, ω is stored on a fine grid, but the velocity

field is stored on the coarse grid. Therefore, the computations to recover ~u

from ω are only required on the coarse grid, which significantly accelerates

the algorithm. To do so, compute the Fourier transform of ω, and truncate

ω̂ to keep only the low frequencies on the coarse grid. This process saves the

information coming from the large vortices, and gets rid of the information of

smaller details of ω when computing ~u. Algorithm 6 summarizes the whole

process.

Algorithm 6 Solving the vorticity equation

· The initial ω0 is given on the fine grid.
for t = 0 to ∞ do
· Compute ω̂ on the fine grid.
· Truncate ω̂ to the coarse grid, keeping low frequencies.
· Compute φ̂ on the coarse grid using equation (5.15).
· Compute φ on the coarse grid using an inverse Fourier transform.
· Compute ~u on the coarse grid using (5.13).
· Advect ω with one step of the diffeomorphism approach of chapter 4 and
remap if needed.
· t← t+ ∆t.

end for

84

5.2.1 Results

Two cases are presented to analyse the method. Implementation of the

algorithm was done in C++. The frames were created using the FreeImage1

library.

5.2.2 Test case : three vortices

The initial state of vorticity ω0 used for this test consists of two negative

votices (i.e. clockwise curl) of strength 1 and one positive vortex (i.e. counter-

clockwise curl) of strength 2. This initial condition is obtained by using a

sum of gaussian functions as the initial vorticity. This initial condition is

represented in the top left subfigure of figure 5–3, where the blue to red scale

represents vorticity from −1 to 2. Figure 5–3 presents three sets of frames

showing the evolution of the solution. From left to right and top to bottom,

they are frames 0, 15, 30, 800, 815, 830, 2400, 2415 and 2430. The vorticity

is stored on a fine grid with Nf = 256 cells per dimensions, and advection

computations are done on a coarse grid having Nc = 32.

The behavior obtained is qualitatively as expected. The flow is governed

by the large vortices, while the finer details are passively advected in the flow.

Still, the frames show that a very high level of detail is maintained throughout

the simulation. The combination of a fine grid and a bicubic interpolant allows

to represent the fine details observed, for instance, in the subfigures of the

bottom row of figure 5–3.

1 http://freeimage.sourceforge.net

85

Figure 5–3: Evolution of three vortices at three sets of frames, evolving from
left to right. The scale from blue to red represents vorticity from -1 to 2.

86

5.2.3 Fine structures

Even if the bicubic interpolant allows to have a high resolution represen-

tation of the solution, it has one major drawback. Since the bicubic Hermite

interpolant can overshoot the data that is on the grid, it can lead to instabili-

ties. The right column of figure 5–4 shows three frames of a simulation done

using the bicubic interpolant, along with a zoom of the central region. The

simulation starts with two negative vortices, which creates heavy compressions

around the central region. The first figure shows a clean solution around the

compression line. But as time advances, the second and third pictures show

noises and instabilities around this line, caused by the bicubic interpolant over-

shooting the data. Since the cubic represents the diffeomorphism, instabilities

will cause points to be mapped to far away places in the domain. This ex-

plains the seemingly random noise observed in the second and third figures of

the right column of figure 5–4. Figure 5–5 shows the grid transformed by the

cubic diffeomorphism for the same frames, and we see that the regions where

the solution is worst correspond with the regions of greatest deformation.

To solve this issue, different interpolants were studied. The left column of

figure 5–4 shows the same simulation done using a bilinear interpolant. The

middle column shows a modified bicubic interpolant where the derivatives are

bounded to avoid excessive overshoots. For the top frames, the solution of the

bilinear and modified bicubic interpolants is not as clean as the solution using

the bicubic interpolant. But for later times (middle and bottom rows), the

solutions remain stable and do not create the additional noise observed with the

bicubic interpolant. Unfortunately, the linear interpolant shows a noticeable

reduction of the level of details it is able to represent in the solution. The

87

modified bicubic seems to be a good choice as it can represent an appreciable

level of details while being stable.

Other interpolants were tried. A notable one is based on a monotone cubic

interpolant from [8], modified with ideas from [11]. In one dimension, these

cubic interpolants are modified to make sure that no overshoot is created.

However, this property is not so easy to maintain in 2D, and applying this

interpolant to the two vortices simulation did not show any improvements over

the regular bicubic interpolant. Many other interpolants have been studied,

but none of them showed better results than the modified bicubic interpolant

of figure 5–4.

5.2.4 Efficiency

As it was mentionned in chapter 4, the separation of scales made avail-

able by the diffeomorphism approach gives a considerable reduction of com-

putational times. The advection of vorticity is computed on a coarse grid by

solving equations (4.3). This step is usually expensive, especially when using

a third order scheme in the gradient-augmented level set method, so solving

it on a coarse grid is a great advantage. Also, the inverse Fourier transforms

are performed on a coarse grid. This step is also expensive and doing it only

on a coarse grid saves a lot of time.

Table 5–1 compares the computational time taken by the method depend-

ing on the grid sizes used. The fine grid is always fixed to a 512 × 512 grid,

but the coarse grid varies from a 16×16 to a 256×256 grid. Figure 5–6 shows

the result of using those different coarse grid on the solution. From top to

bottom, the coarse grid has 16, 64 and 256 cells per dimension. From left to

right, frames 30, 60, 90, 120, 150, 300 and 900 are shown.

88

Figure 5–4: Comparison of using a bilinear, modified bicubic or bicubic in-
terpolant to represent the solution for frames 65, 90 and 200, with a zoom of
the central region. The cubic interpolant (right) shows problems in the central
region due to overshoot, while the modified bicubic (middle) and bilinear (left)
interpolant show a stable solution.

Coarse grid size 16 32 64 128 256
Time (sec.) 687 867 1304 2271 6034

Table 5–1: Comparison of computational times (in seconds) for different coarse
grid resolutions. The fine grid is fixed at 512× 512.

89

Figure 5–5: Representation of the grid transformed by the cubic diffeomor-
phism for frames 65, 90 and 200. The regions of greatest deformation match
the representation problems seen in figure 5–4.

Figure 5–6: Simulation for two initial vortices with different resolutions of the
coarse grid. From top to bottom, the coarse grid has 16, 64 and 256 cells per
dimension. From left to right, frames 30, 60, 90, 120, 150, 300 and 900 are
shown.

90

The reduction of the coarse grid resolution shows a significant reduction of

computational times. From a 256×256 grid to a 16×16 grid, the computational

time decreases by a factor 10. However, figure 5–6 shows that the solution is

different depending on the grids. Using the 256×256 grid gives a more precise

result and some features that should appear in the exact solution are observed,

such as the backwards cascade, i.e. small vortices regrouping into bigger ones.

This phenomenon is clearly observable in the transition between the fifth and

sixth panels of the last row of figure 5–6, where thin filaments regroup to form

new vortices. However, if the goal of solving the Euler equations is simply to

have a visually acceptable result, then using a 16× 16 or a 32× 32 grid might

be enough. The trade-off between speed and accuracy of the solution is, as

always, dependent of the intended use of the simulation.

91

CHAPTER 6
Conclusion and outlook

In this thesis, we have presented several numerical methods to transport

sets in a vector field. Some of those methods are well known and well tested,

while others are new. We have presented in chapters 2 and 3 approaches using

implicit and explicit definitions of sets, in addition to a procedure that uses

diffeomorphisms in chapter 4. It is important to have a large array of methods

to transports sets since every situation has its own needs, and no technique

dominates all the others.

The results obtained by using our new methods in standard tests are

encouraging. They show improvements over other methods with regards to

accuracy and efficiency. However, the real challenge remains to couple these

methods with other techniques in order to solve complex non-linear situations.

We saw in chapter 5 that for a complicated system such as the Navier-Stokes

equations, the advection of a set is only a part of a larger problem. We

have succesfully applied the CM method of chapter 4 to the Euler equations,

but using it to solve Navier-Stokes is still challenging and requires further

investigation. Each physical problem has its own associated system of PDEs,

sometimes with completely different properties than what we presented here,

so much work remains to be done in this area.

92

References

[1] David Adalsteinsson and James A Sethian. A fast level set method for
propagating interfaces. Journal of Computational Physics, 118(2):269–
277, 1995.

[2] Yann Brenier. Topics on hydrodynamics and volume preserving maps.
Handbook of mathematical fluid dynamics, 2:55–86, 2003.

[3] Faires Burden and J Faires. Reynolds. Numerical Analysis, Prindle,
Weber, & Schmidt, 1981.

[4] Prince Chidyagwai, Jean-Christophe Nave, Rodolfo Ruben Rosales, and
Benjamin Seibold. A comparative study of the efficiency of jet schemes.
International Journal of Numerical Analysis and Modeling - Series B,
3(3):297–306, 2012.

[5] Richard Courant, Eugene Isaacson, and Mina Rees. On the solution of
nonlinear hyperbolic differential equations by finite differences. Commu-
nications on Pure and Applied Mathematics, 5(3):243–255, 1952.

[6] Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. A hy-
brid particle level set method for improved interface capturing. Journal
of Computational Physics, 183(1):83–116, 2002.

[7] Lawrence C. Evans. Partial Differential Equations. AMS, 2010.

[8] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of
smoke. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 15–22. ACM, 2001.

[9] Ronald P Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher. A
non-oscillatory eulerian approach to interfaces in multimaterial flows (the
ghost fluid method). Journal of Computational Physics, 152(2):457–492,
1999.

[10] Matteo Frigo and Steven G Johnson. Fftw: An adaptive software ar-
chitecture for the fft. In Acoustics, Speech and Signal Processing, 1998.
Proceedings of the 1998 IEEE International Conference on, volume 3,
pages 1381–1384. IEEE, 1998.

[11] Frederick N Fritsch and Ralph E Carlson. Monotone piecewise cubic
interpolation. SIAM Journal on Numerical Analysis, 17(2):238–246, 1980.

93

94

[12] Ami Harten and Stanley Osher. Uniformly high-order accurate nonoscil-
latory schemes. i. SIAM Journal on Numerical Analysis, 24:279, 1987.

[13] Ken Kamrin, Chris H Rycroft, and Jean-Christophe Nave. Reference map
technique for finite-strain elasticity and fluid–solid interaction. Journal
of the Mechanics and Physics of Solids, 2012.

[14] Myungjoo Kang, Ronald P Fedkiw, and Xu-Dong Liu. A boundary con-
dition capturing method for multiphase incompressible flow. Journal of
Scientific Computing, 15(3):323–360, 2000.

[15] Haruhiko Kohno and Jean-Christophe Nave. A new method for the level
set equation using a hierarchical-gradient truncation and remapping tech-
nique. Computer Physics Communications, 2013.

[16] Peter Lancaster and Kes Salkauskas. Surfaces generated by moving least
squares methods. Mathematics of computation, 37(155):141–158, 1981.

[17] Randall J LeVeque. High-resolution conservative algorithms for advection
in incompressible flow. SIAM Journal on Numerical Analysis, 33(2):627–
665, 1996.

[18] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-
oscillatory schemes. Journal of computational physics, 115(1):200–212,
1994.

[19] Jean-Christophe Nave, Rodolfo Ruben Rosales, and Benjamin Seibold. A
gradient-augmented level set method with an optimally local, coherent
advection scheme. Journal of Computational Physics, 229(10):3802–3827,
2010.

[20] Stanley Osher and James A Sethian. Fronts propagating with curvature-
dependent speed: algorithms based on hamilton-jacobi formulations.
Journal of computational physics, 79(1):12–49, 1988.

[21] J-P Pons, G Hermosillo, R Keriven, and O Faugeras. Maintaining the
point correspondence in the level set framework. Journal of Computa-
tional Physics, 220(1):339–354, 2006.

[22] Benjamin Seibold. M-matrices in meshless finite difference methods.

[23] Benjamin Seibold, Jean-Christophe Nave, and Rodolfo Ruben Rosales.
Jet schemes for advection problems. Discrete and Continuous Dynamical
Systems - Series B, 17(4):1229–1259, 2012.

[24] James A Sethian and Alexander Vladimirsky. Fast methods for the eikonal
and related hamilton–jacobi equations on unstructured meshes. Proceed-
ings of the National Academy of Sciences, 97(11):5699–5703, 2000.

95

[25] Gunilla Sköllermo. A fourier method for the numerical solution of poissons
equation. Mathematics of Computation, 29(131):697–711, 1975.

[26] Jos Stam. Stable fluids. In Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, pages 121–128. ACM
Press/Addison-Wesley Publishing Co., 1999.

[27] Mark Sussman, Emad Fatemi, Peter Smereka, and Stanley Osher. An
improved level set method for incompressible two-phase flows. Computers
& Fluids, 27(5):663–680, 1998.

[28] Steven T Zalesak. Fully multidimensional flux-corrected transport algo-
rithms for fluids. Journal of computational physics, 31(3):335–362, 1979.

