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Figure 1: We advect smoke particles using our model-reduced, multiresolution representation of the underlying fluid dynamics. Each basis
flow (visualized in simplified form, on the right) has local support, which permits an adaptive representation of the fluid dynamics across
scales over the simulation domain. Our basis is efficient to construct, apply and evaluate, it handles dynamic obstacles and curved bound-
aries, and it allows flexible user control.

Abstract
We present a flexible model reduction method for simulating incompressible fluids. We derive a novel vector field basis composed
of localized basis flows which have simple analytic forms and can be tiled on regular lattices, avoiding the use of complicated
data structures or neighborhood queries. Local basis flow interactions can be precomputed and reused to simulate fluid dy-
namics on any simulation domain without additional overhead. We introduce heuristic simulation dynamics tailored to our
basis and derived from a projection of the Navier-Stokes equations to produce physically plausible motion, exposing intuitive
parameters to control energy distribution across scales. Our basis can adapt to curved simulation boundaries, can be coupled
with dynamic obstacles, and offers simple adjustable trade-offs between speed and visual resolution.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Realistic fluid simulation remains a fundamental challenge in com-
puter graphics. Complex and intricate fluid features appear across
spatial scales, and reproducing these detailed dynamics on uni-
formly discretized domains requires prohibitively large resolutions.
Multiresolution methods can reduce this limitation by adapting the
spatial and temporal simulation resolution, focusing computation

time on appropriate regions of interest, e.g., regions where a fluid
evolves into finer-scale structures or regions where a viewer’s at-
tention is more likely to be drawn.

Fluid simulation on non-uniform grids, such as octrees, is one
common multiresolution approach used in graphics: given a uni-
form simulation grid, each cell is repeatedly subdivided until the
required simulation resolution is reached. Implementing these ap-
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proaches in a robust manner requires care, as interactions between
cells across simulation scales can become non-trivial. Wavelet-
based methods are another alternative, relying on localized multi-
scale representations of the underlying dynamics. While these
methods result in more compact representations of the simulation
quantities, converting between wavelet and primal-domain repre-
sentations often creates a computational bottleneck.

Our work is based, instead, on a model reduction methodology:
simulated quantities are represented as weighted combinations of
basis vector fields and the underlying dynamics are reformulated
as operators that act on this reduced representation. The utility of
these methods relies heavily on basis properties, and optimal basis
design for model-reduced dynamics remains an open problem.

We present a novel basis suitable for multi-resolution fluid sim-
ulations. Our contributions include:

• a simple method to construct anisotropic vector field basis func-
tions with local support and important orthogonality properties,

• flexible tiling strategies to cover arbitrary simulation domains
without any basis recomputation, and

• an efficient, stable simulation algorithm that uses localized basis
interactions and provides control over turbulent energy cascades.

2. Previous Work

Foster and Metaxas [FM96] and Stam [Sta99] pioneered efficient
fluid simulation in computer graphics by solving a discretization of
the dynamics on uniform grids. However, these uniform discretiza-
tions do not scale well to the requirements of modern high-fidelity
fluid simulations. We outline below the various strategies used to
accelerate fluid simulation in this context.

Model Reduction. The infinite-dimensional space of all possible
vector fields can be reduced to linear combinations of specially-
chosen basis fields. This high-level model reduction principle has
been applied to many problems in computer graphics, including
character animation [PW89,KRFC09], cloth simulation [HTC∗14],
deformation [BJ05] and global illumination [SSW∗13].

Treuille et al. [TLP06] introduced model reduction for fluids to
computer graphics using vector field basis functions constructed
from SVD decompositions of full-space simulation data. Their
divergence-free basis satisfies boundary conditions, but the need
for full-space simulation constrains its use to re-simulations in a
single, fixed domain. Improvements allow for fluid parameter vari-
ations [KD13] and limited domain deformations [SSW∗13], but the
precomputed full-space simulation constraint remains.

Wicke et al. [WST09] improve basis reusability by precomputing
modular, reconfigurable flows. Gerszewski et al. [GKSB15] instead
enrich a set of existing basis functions for task adaptation. In both
cases, however, the initial basis and any interactions with additional
basis elements must still be precomputed from a costly full-space
simulation.

Instead of being precomputed, basis functions can be generated
analytically. De Witt et al. [DWLF12] and Liu et al. [LMH∗15] de-
rive a basis using the eigenfunctions of the Laplacian operator, a
construction akin to the scalar Fourier basis. This method applies

to any fixed domain shape and produces an arbitrary number of
divergence-free basis functions. It leads to an intuitive basis where
every basis coefficient only influences a single flow frequency.
Cui et al. [CSK18] also show the eigenfunctions can be extended
to other boundary conditions, and they propose improvements to
make them more computationally efficient. However, these basis
functions must be completely recomputed if the simulation domain
changes, and their global support precludes any local control over
the final simulation.

We propose a multiresolution analytic basis that provides local
control and that can be tiled and warped onto arbitrary domains,
including dynamic obstacles and curved boundaries.

Vorticity Methods. Several methods use the vorticity formula-
tion of the Navier-Stokes equations to simulate fluid motion.
Vorticity representations include point primitives [Ang17], fila-
ments [ANSN06, WP10], and sheets [PTG12]. These elements are
advected by the flow and fully represent the fluid motion. Other
methods use vorticity to add turbulent details atop coarser simula-
tions [GNS∗12, NSCL08]. In either case, fluid dynamics are trans-
posed onto the vorticity elements, where they advect, rotate, and de-
form into elements of varying scale. Inspired by these approaches,
we design basis functions that can adapt to multiscale dynamics.

Since vorticity elements move freely in the simulation domain,
fluid flow reconstruction requires neighborhood searches and com-
plex data structures. While we do not rely explicitly on a vorticity
formulation, our basis functions are similar to localized vortices,
but defined entirely in the spatial domain and statically positioned
on regular patterns. This allows us to avoid costly frequency con-
versions and use simple data structures to accelerate computation.

Wavelet Methods. Our basis functions are inspired by wavelets,
which have a rich history in the fluid dynamics literature (e.g.,
Schneider and Vasilyev [SV10]). Wavelets are used to study the
statistical properties of turbulent flows [FR88, BHL93] and en-
able efficient simulations in vorticity formulation [CP96, FSK99],
albeit mostly limited to 2D domains. More general approaches,
such as adaptive wavelet collocation methods (AWCM) [KV05,
NVBDV15], are also popular in engineering applications since
they provide a general and physically-accurate framework appli-
cable to many classes of differential equations. The wavelets used
in AWCM, however, are not divergence-free and require frequent
conversions to-and-from the frequency domain.

Divergence-free wavelets (DFWs) are also interesting, as they
avoid the pressure and incompressibility computations of stan-
dard solvers. Lemarié-Rieusset [LR92] proposed DFWs with com-
pact support and Deriaz et al. [DP06] applied them to simula-
tion. These bases are not orthogonal and their construction mostly
applies to periodic domains with grid discretizations, which hin-
ders their application to more complex, dynamic domains encoun-
tered in graphics. More recent extensions of DFWs onto square do-
mains [Ste11, KHP15] suffer from similar restrictions.

Our work is similar in principle to AWCM and divergence-free
wavelets, but our basis functions are better adapted to fluid simula-
tions on complex, potentially dynamic domains. While motivated
by classical wavelet theory, we do not rely on it when constructing
our vector field basis.
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3. Notation and Model Reduction

We introduce our notation and model reduction in 2D, both of
which extend naturally to 3D. We use lowercase script for scalars
(a), bold lowercase for vectors and vector-valued functions (a), and
bold uppercase for matrices and tensors (A). To simplify notation,
we sometimes omit function parameters and integral differentials.

We rely on quasimatrix notation [Ste98] to express linear com-
binations of functions, where “matrices” have one dimension of
infinite size, i.e., columns are ∈ R∞. In our case, quasimatrix
columns represent vector-valued functions on the simulation do-
main Ω⊂ R2. Let �i denote a tensor-vector product, with the sum
taken over the ith collapsed tensor dimension. For instance, given
a matrix A with columns a j, and a vector v with elements v j, the
product Av can be written as A� j v = ∑ j v j a j .

We refer to the set of all continuous vector fields defined on Ω

as the full space F , and refer to its elements as flows. The idea
of model reduction is to operate on a reduced subspace R ⊂ F
of flows composed only of linear combinations of a given finite
set of linearly-independent basis flows bi ∈ F , i ∈ {1, . . . ,r}. Let
B ∈R∞×r be the quasimatrix whose columns are the r basis flows
bi. Any flow u ∈R is represented by a set of coefficients ũ ∈Rr as
u = Bũ. Conversely, any flow u∈F can be projected to the closest
(in the least-squares sense) element ofR using the normal equation
ũ = B+u, where B+ is the pseudoinverse of B, defined as

B+ = B−BT where B− =
(

BT B
)−1

(1)

and where matrix (BT B) ∈ Rr×r has entries (BT B)i j =
∫

Ω
bi ·b j .

Our goal is to approximate the behavior of the Navier-Stokes
equations on Ω:

∂u
/

∂t =−(∇u)u+∇p+ν∇2u+ f and ∇·u = 0 , (2)

where u, p and f are functions of space with an implicit dependence
on time t. Specifically, u is the fluid velocity flow, p is the scalar
pressure, ν is the viscosity, f is the external forces flow,∇ is the gra-
dient operator for scalars or the Jacobian operator for vectors, and
∇2 is the Laplace operator. We use no-slip boundary conditions,
i.e., the flow must match boundary velocities.

Model-reduced simulations commonly impose that all basis
flows be divergence-free, making any combined flow u ∈ R
divergence-free by linearity. As noted by Treuille et al. [TLP06],
this allows us to avoid the costly pressure solve of more traditional
solvers [Sta99], and we replace Equations 2 by the simpler system

∂u
/

∂t =−(∇u)u+ν∇2u+ f . (3)

Projecting both sides of Equations 3 ontoR yields

∂ũ
/

∂t =−B−
(
(A�i ũ)� j ũ

)
+νB− (D�i ũ)+ f̃ , (4)

where the advection tensor A ∈ Rr×r×r and the diffusion matrix
D ∈ Rr×r have elements

Ai jl =
∫

Ω

bl · ((∇bi)b j) and Dil =
∫

Ω

bl ·∇2bi . (5)

Equation 4 thus expresses the fluid dynamics in terms of only the
reduced coefficients. This simplifies computational complexity at
the cost of restricting the set of possible generated flows.

4. Basis Construction

Equation 4 suggests desirable properties for the basis flows bi:

1. divergence-free basis flows are essential in order to apply the
simplified Navier-Stokes formulation in Equation 3,

2. an orthogonal basis, i.e.,
∫

Ω
bi ·b j = 0∀i 6= j, implies that B−

is the identity, avoiding costly matrix inversions in Equation 4,
3. local support sparsifies the A and D tensors as elements corre-

sponding to the combination of basis flows with non-overlapping
support are zero; this facilitates basis manipulation, since modi-
fying the coefficient of one basis flow only affects the total flow
locally in the domain,

4. and basis completeness, i.e., the ability to represent any flow in
F ; while this is not generally achievable with a finite number
of basis flows, it is desirable to have as large a set of linearly
independent basis flows (and at as many scales) as possible.

As discussed in Section 2, methods based on full-space simulation
snapshots generally only satisfy the divergence-free property, and
previous work on Laplacian eigenvectors do not yield locally sup-
ported basis functions. Wavelet bases satisfy the last three proper-
ties, but it is mathematically impossible to create a basis that satis-
fies all four properties using traditional wavelet theory [LR94].

We construct a multiscale basis that carefully compromises be-
tween these four properties. Each of our basis flows is divergence-
free and has bounded support. Our basis can be made increasingly
complete, in the sense that we can create as many basis flows with
arbitrary frequency as desired, but without necessarily being able
to mathematically represent any flow in F . We devise a relaxed or-
thogonality property, where only basis flows of the same frequency
are orthogonal. We show in Section 5 how this last property can
still be exploited to reduce computation cost.

We detail the construction of our basis in the remainder of this
section. Our exposition focuses on the 2D case, with particularities
of extensions to 3D highlighted in Section 4.6.

4.1. Basis Scheme

Similarly to wavelet approaches, our basis is built atop exemplar
basis flows which are tiled over Ω at various scales. We first con-
struct a basis template bk(x) := b(kx,ky)(x,y) for each frequency
k in a predetermined integer set K ⊂

(
N≥1

)2. Each basis tem-
plate bk is centered at (0,0) and has a finite rectangular support
Sk = [−1/(2kx),1/(2kx)]× [−1/(2ky),1/(2ky)], outside of which
it has value (0,0). We tile Ω with copies of the basis templates

and denote these translated basis flows bk
c (x) := b(kx,ky)

(cx,cy)
(x,y) :=

bk(x− cx,y− cy), where subscript c ∈ Ck ⊂ R2 indexes the basis
flow centers.

The choice of K and Ck defines the overall coverage of the sim-
ulation domain, with larger sets improving coverage while also
increasing computational cost. Throughout this section, we use
K =

{
(2α,2β) |α,β ∈ N≥0

}
, which corresponds to a power-of-

two basis refinement. Note that the refinement in each axis is in-
dependent, allowing for anisotropic basis flows. We tile the basis
flows on regular lattices using Ck = ((φ/kx)Z)× ((φ/ky)Z), where
φ is the tilling density. We use φ = 1/2 throughout this section,
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Figure 2: Visualization of our coverage of a simulation domain,
where each ellipsoid represents a single basis flow. For each fre-
quency layer, basis flows are aligned on a regular lattice, and cover
as much of the simulation domain as possible. Basis flows with
higher anisotropy ratios or smaller scale naturally reach narrower
regions, and better wrap around curved boundaries.

which means basis flows overlap by half of their support size. Fig-
ure 2 illustrates the basis coverage obtained with these parameter
settings, visualizing only the basis flows with support inside the
simulation domain. These K and Ck choices adequately cover the
simulation domain, but we detail other coverage options in Sec-
tion 6.

4.2. Divergence-Free, Continuity, and Locality Constraints

Inspired by De Witt et al. [DWLF12], our basis templates are con-
structed from the divergence-free vector-valued eigenfunctions of
the Laplacian on the unit square, with free-slip boundary condi-
tions. Note that even though we use the free-slip eigenfunctions
in our construction, our final basis templates will have a no-slip
boundary condition. The eigenfunctions are more naturally de-
scribed on the square D1 = [0,1]2, so we will define the basis tem-
plates on Dk = [0,1/kx]× [0,1/ky] and shift them back to Sk in
Section 4.5.

Vector eigenfunctions on D1, which we call the eigenflows, are

ek(x) =
(

ky sin(kx πx) cos(ky πy)
−kx cos(kx πx) sin(ky πy)

)
∈ R2 , (6)

where k ∈ (N≥1)
2 is the eigenflow’s frequency. We consider a pe-

riodic extension of these eigenflows to R2, with period 2kx in x and
2ky in y (Figure 3). This basis is akin to the Fourier basis, since
eigenflows represent a single frequency and have infinite support.

We use linear combinations of eigenflows to construct our basis,
aiming for the simplest combinations that satisfy our constraints.
Ideally, we would only need to use the single eigenflow ek to de-
fine a basis template bk, since it isolates the coarsest frequency
matching the size of Dk; however, we cannot simply clamp ek to
zero outside Dk, as it would create a discontinuous flow.

To define basis template bk, we therefore need to add some
eigenflow octaves with higher frequencies to the fundamental
eigenflow ek, where the frequencies of the octave eigenflows are
integer multiples of k. We denote them eak = e(axkx,ayky) with
a = (ax,ay) ∈

(
N≥1

)2. In particular, octave a = (1,1) is the funda-
mental frequency. We consider a linear combination hk of octaves,

artificially restricting their support to Dk, which yields

hk(x) =

 ∑
a∈A

wk
a eak(x) if x ∈ Dk

0 otherwise
, (7)

where A is a given finite octave multiplier subset of
(
N≥1

)2 con-
taining at least (1,1), and wk

a ∈R are the scalar weights of the linear
combination. Since we do not want basis templates to favor either
spatial axis, we imposeA to be a Cartesian product of the same set
of multipliers A? in x and y, i.e., A = A?×A?. We aim for A to
be as small as possible, so that the linear combination is dominated
by the fundamental eigenflow, and the structure of the basis is as
simple as possible. For the same reasons, we impose

wk
1 = 1 (8)

and aim for |wk
a | to be as small as possible ∀a 6= (1,1). To enforce

continuity, we constrain hk to be zero on the boundary of its sup-
port, noted ∂Dk. Evaluating the eigenflows eak on the four sides of
∂Dk gives

eak(x)
∣∣
x=0 = (0 ,−ax kx sin(ay ky πy))

eak(x)
∣∣
x=1/kx

= (0 ,−(−1)ax ax kx sin(ay ky πy))

eak(x)
∣∣
y=0 = (ay ky sin(ax kx πx), 0)

eak(x)
∣∣
y=1/ky

= ((−1)ay ay ky sin(ax kx πx), 0)

, (9)

which results in the constraints

hk∣∣
∂Dk = 0 (10)

⇒



∑
ay∈A?

(
∑

ax∈A?

−wk
a ax kx

)
sin(ay ky πy) = 0

∑
ay∈A?

(
∑

ax∈A?

−wk
a (−1)ax ax kx

)
sin(ay ky πy) = 0

∑
ax∈A?

(
∑

ay∈A?

wk
a ay ky

)
sin(ax kxπx) = 0

∑
ax∈A?

(
∑

ay∈A?

wk
a (−1)ay ay ky

)
sin(ax kx πx) = 0

.

Since the functions sin(βπx) are linearly independent for different
β, we can equate their coefficients in the sums to zero, leading to

⇒



∑
ax∈A?

wk
a ax = 0 ∀ay ∈ A?

∑
ax∈A?

wk
a (−1)ax ax = 0 ∀ay ∈ A?

∑
ay∈A?

wk
a ay = 0 ∀ax ∈ A?

∑
ay∈A?

wk
a(−1)ay ay = 0 ∀ax ∈ A?

, (11)

which is a system of linear constraints for variables wk
a . By choos-

ing a sufficiently large A, we can have enough variables to solve
this system and obtain weights that zero hk on ∂Dk. Figure 3 pro-
vides some visual intuition on simple solutions to this system. With
weights satisfying Equations 11, hk is continuous and locally sup-
ported on Dk, as desired.

Interestingly, applying the same method on basis flow derivatives
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Figure 3: We combine eigenflows to zero-out flow along the bound-
ary of Dk, shown in red. e(1,1) exhibits the structure we desire for
our basis flows (left), but has infinite support and is non-zero on
the desired support boundary (and so clamping it would introduce
discontinuities). 1/3e(3,1) has the same value along on the top and
bottom boundaries (middle left), so subtracting it from e(1,1) zeroes
the top and bottom velocities (middle right). We repeat this step
to zero-out flow along the entire boundary (right). This process is
extended with more eigenflows to construct our basis templates.

to impose ∂hk/∂x = 0, ∂hk/∂y = 0 or ∂
2hk/(∂x∂y) = 0 on ∂Dk

results in the exact same constraints. Therefore, by simply impos-
ing continuity on the border, we also obtain continuous first-order
derivatives. More importantly, it implies a well-defined divergence
(of zero) along the border.

Equations 11 do not imply continuity in the higher-order deriva-
tives. However, these properties could be directly added to the con-
straint set, if desired. Since hk is composed exclusively of sinu-
soids, its derivatives are easily computed, leading to expressions
similar to those in Equations 9. Any degree of smoothness, or
more generally any homogeneous linear boundary constraint on
the derivatives of the basis flows, could thus be imposed on hk.
Doing so, however, would require a larger A to satisfy the added
constraints, so we choose not to impose any additional smoothness
constraints for our application.

4.3. Orthogonality per Frequency

Since A can be as large as necessary, Equations 11 can be solved
with an arbitrarily large number of free coefficients. We exploit
these extra coefficients to impose additional orthogonality proper-
ties on our basis.

If the location and frequency of every basis flow used in a given
domain were known in advance, and did not change during simu-
lation, we could enforce full orthogonality between all basis flow
pairs. This would result in a prohibitively large set of quadratic
constraints for the coefficients wk

a , mandating in turn the use of
a very large A: this is computationally impractical, creates basis
flows with complex structures, and requires the computation of a
new basis each time the simulation domain changes.

To reduce the number of constraints, we compromise and only
impose orthogonality between basis flows of the same frequency.
Since two basis flows whose support do not intersect are trivially
orthogonal, and our basis flows are tiled regularly with φ = 1/2, we
only need to locally impose orthogonality between any given basis
flow and its eight neighbors (in 2D) of that same frequency. Due to

symmetries, this reduces to only the three constraints:
∫
∩1

hk (x,y) · hk(x,y−1/(2ky)) = 0∫
∩2

hk (x,y) · hk(x−1/(2kx),y−1/(2ky)) = 0∫
∩3

hk (x,y) · hk(x−1/(2kx),y) = 0

, (12)

where ∩1, ∩2 and ∩3 are the support intersections of the two flows
in each integrand. This system results in the quadratic constraints:

∑
a1∈A
a2∈A

wk
a1 wk

a2

∫
∩1

ea1k (x,y) · ea2k
(

x,y− 1
2ky

)
= 0

∑
a1∈A
a2∈A

wk
a1 wk

a2

∫
∩2

ea1k (x,y) · ea2k
(

x− 1
2kx

,y− 1
2ky

)
= 0

∑
a1∈A
a2∈A

wk
a1 wk

a2

∫
∩3

ea1k (x,y) · ea2k
(

x− 1
2kx

,y
)

= 0

. (13)

We solve the integrals in Equation 13 analytically for each k to
obtain a system of three quadratic equations for the coefficients wk

a .

4.4. Solving the Constraints

From Sections 4.2 and 4.3, we search for the smallest set A that
satisfies constraints 8, 11, and 13. By successively eliminating fam-
ilies of sets, we arrive at an optimal octave set with A? = {1,3,5}.

To solve (numerically) for the nine coefficients wk
a correspond-

ing to this choice of A?, we first solve the linear system (Equa-
tions 11 and 8), which expresses six of the wk

a as linear combi-
nations of the other weights. Substituting this into the quadratic
Equations 13, we are left with three quadratic equations of three un-
knowns. This cannot be solved exactly, as it requires solving roots
of polynomials of degree eight. We instead obtain a numerical so-
lution using the NSolve method from Mathematica [Wol17] with
the "EndomorphismMatrix" option.

From Bezout’s theorem [Coo32], there exist eight solutions to
this system, which gives us a way of confirming that the nu-
merical procedure has found all solutions. We discard solutions
with complex coefficients and retain the solution that minimizes

‖hk‖ :=
√∫

hk ·hk . This leads to a solution that minimizes the

influence of higher octaves, since we set wk
1 = 1.

4.5. Final Basis Templates

Having defined basis templates on Dk, we translate them back to
their more convenient support Sk. We also normalize the basis tem-
plates to have unit norm. The final basis template definition is

bk(x,y) =
(

1
/
‖hk‖

)
hk(x−1/(2kx),y−1/(2ky)) . (14)

A priori, it seems Equations 8, 11 and 13 must be solved for
each fundamental frequency k. However, if kx and ky have com-
mon factors, they can be factored out of the constraints, and the
same solutions are obtained for fundamental frequencies (kx,ky)
and (αkx,αky)∀α ∈N≥1. Therefore, we only need to compute the
octave coefficients once per anisotropy ratio, denoted (kx : ky), and
we only compute the templates for frequencies where min(k) :=
min(kx,ky) = 1. Also, due to symmetries, coefficients need only be
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a Anisotropy Ratio
(1 : 1) (2 : 1) (4 : 1)

(1,1) 1.0000000000 1.0000000000 1.0000000000
(1,3) -0.1107231463 0.0277351959 0.0336558844
(1,5) -0.1335661122 -0.2166411175 -0.2201935306
(3,1) -0.1107231463 -0.4866818264 -0.5578126029
(3,3) 0.1262767635 0.0543786840 -0.0036701213
(3,5) -0.0536214289 0.0647091549 0.1137645934
(5,1) -0.1335661122 0.0920090959 0.1346875617
(5,3) -0.0536214289 -0.0381742496 -0.0045291041
(5,5) 0.0588860798 0.0045027306 -0.0242200499

‖bk̂‖ 0.9783644776 1.3121697019 1.7797075185

Table 1: 2D octave weights wk̂
a and scaling coefficent ‖bk̂‖ for

anisotropy ratios (1 : 1), (2 : 1) and (4 : 1) solving the constraints
of Section 4.

Figure 4: Basis flow templates for anisotropy ratios (1 : 1), (2 : 1)
and (4:1).

computed for anisotropy ratios (α : β) with α≥ β, since other basis
templates can be obtained by rotation.

Finer basis templates with min(k) > 1 can be obtained by scal-
ing. From the eigenflow definition in Equation 6, we have eβk(x) =
βek(βx) for any scalar β, which leads to the scaling relation

bk(x) = min(k)bk̂(min(k)x) , (15)

where k̂ = k/min(k). The few remaining basis templates that need
to be explicitly evaluated are stored on a fine grid, and we evaluate
these basis templates with tabulation (i.e., GPU texture lookups).

This ability to reuse basis templates is a major advantage of our
method. As noted by Jones et al. [JSK16], model reduction methods
based on simulation snapshots usually store basis functions at the
same resolution as the simulation grid, incurring prohibitive mem-
ory costs. Our method only stores one basis template per anisotropy
ratio, and all translated basis flows can be represented by only stor-
ing their center and frequency.

We provide the octave coefficients and normalization factors for
frequency ratios (1 : 1), (2 : 1) and (4 : 1) in Table 1, and illustrate
the corresponding basis flows in Figure 4. As desired, these basis
flows are divergence-free, have local support, and can be tiled at
any scale while remaining orthogonal within each frequency layer.

Figure 5: Left: Z-aligned 3D basis flow of frequency (1,1,1), con-
structed from the extrusion of the 2D basis flows. Right: Transport
method of Section 5.2. A basis flow is advected to a location where
no basis flow of the same frequency exists. Since basis flows can-
not actually move, its weight is distributed to its four (eight in 3D)
neighbors, following the interpolation formulation of Equation 20.

4.6. Basis Flows in 3D

We extend our construction method to 3D. The main difference is
that 3D eigenflows are defined in three separate groups, aligned
along each spatial axis. This relates to the fact that vorticity is a
scalar value in 2D, but requires three components in 3D. We there-
fore construct a basis template bk

z aligned along the z-axis, and
rotate it to create basis templates bk

x and bk
y aligned along the x-

and y-axes. We tile the simulation domain as before, but now each
c ∈ Ck is the center of three collocated basis flows (one per axis).

Basis construction is more involved in 3D since not all the eigen-
flows are linearly independent. Fortunately, we arrive at a very sim-
ple solution, which we discuss on an intuitive level, below; we pro-
vide full mathematical derivations in a supplemental document.

To construct bk
z with frequency k = (kx,ky,kz), we reuse the 2D

basis template definition in (x,y) and extrude it along z. We define

bk
z (x,y,z) = 2kz cos(kzπz)2


(

b(kx,ky)(x,y)
)
· (1,0)(

b(kx,ky)(x,y)
)
· (0,1)

0

 , (16)

which is divergence-free by construction. The weighting in z is nec-
essary for the basis flow to be zero along the z boundaries of its sup-
port. This particular choice of weighting function is obtained from
the general 3D basis template construction method in our supple-
mental material, and the 2kz factor normalizes the basis template.

We illustrate this basis template in Figure 5-left for frequency
(1,1,1). We still only need to compute basis flows where min(k) =
1, as detailed in Section 4.5. The scaling relation of Equation 15 is
however replaced in 3D by

bk
z (x) = (min(k))3/2 bk̂

z (min(k) x) . (17)

5. Model-Reduced Fluid Dynamics

We now detail an efficient model-reduced fluid solver using our ba-
sis. In most model reduction methods, the dynamics are computed
directly with Equation 4, which presents many challenges.

First, the advection tensor A can be very large since it deals with
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triplets of basis flows. With our basis, however, the local basis flow
supports introduce significant sparsity into A since any element
Ai jl is zero if the supports of any two of the involved basis flows do
not intersect. Still, A contains many non-zero entries, and comput-
ing interactions for each triplet of basis flows remains expensive.

Second, there is typically no guarantee that the dynamics equa-
tions will project well onto each basis flow, mainly due to Equa-
tion 4 modeling the linearized instantaneous behavior of the fluid;
the dynamics are defined in a space tangent to the simulation and
cannot necessarily be accurately captured with a basis designed to
represent the fluid velocity. For instance, the term ∇bi in Equa-
tion 5 is not divergence-free, so projecting it onto a divergence-free
basis is not likely to be accurate.

For these reasons, we avoid direct use of the advection tensor and
diffusion matrix. Instead, we design a simulation method tailored to
our basis, with a focus on synthesizing the key behaviors of realistic
smoke. We emphasize that our method only uses the Navier-Stokes
equations to derive a heuristic but physically plausible simulation
behavior, and does not aim to produce accurate solutions to these
equations. We specifically focus on the energy cascade [Dav15] of
a fluid undergoing motion, and identify the following behaviors we
wish to capture during simulation:

• energy is introduced into the system through, e.g., buoyancy
forces or stirring motions, corresponding to f̃ in Equation 4,

• energy can be transported in the simulation domain without
changing its frequency content, corresponding to rigid transfor-
mations of fluid structures in the flow; this component of trans-
port is usually encoded as a part of the advection tensor A,

• energy can also be transferred between energy levels, mostly
from large structures and vortices decaying into smaller ones un-
der deformation forces; this is also usually encoded as part of A,
and

• at the finest scale, energy is dissipated by viscosity; this is usu-
ally obtained by applying the dissipation tensor D.

Our simulator represents velocity fields with our basis and simu-
lates all four behaviors by evolving the reduced flow coefficients in
time. Smoke particles are passively advected by the velocity field.
We detail each of the simulation stages for the phenomena listed
above in the following sections, and summarize the main iteration
loop of our method in Algorithm 1.

1 Load precomputed ti j, ri j , and (BTB)i j; [Section 5.4]
2 while true do
3 Move dynamic obstacles;
4 Project dynamic obstacle boundaries; [Section 6.2]
5 Project external forces; [Section 5.1]
6 Transport and rotate basis flows; [Section 5.2]
7 Transfer basis flow energy; [Section 5.3]
8 Stretch basis flows; [Section 6.1]
9 Advect particles;

10 Seed new particles;

Algorithm 1: Our simulation method, summarizing Sections 5 and 6.

5.1. Projecting External Forces

As discussed in Section 3, any vector field f ∈ F can be projected
onto the basis subspace R as f̃ = (BTB)-1BTf. First, computing
BTf involves computing

∫
Ω

bi · f for every basis flow bi. Both f and
bi are defined as continuous functions on Ω, but we use a finite
grid to numerically compute the integrals. We found that an axial
grid resolution of 32 is sufficient and note that, since basis flows
of the same anisotropy have the same definition (up to a scale and
offset), we can efficiently compute integrals involving these basis
flows concurrently.

Second, we use Gauss-Seidel iterations to solve the linear sys-
tem to invert (BTB). This approach is often slower than other basic
schemes, e.g., Jacobi iterations, since entries cannot generally be
processed in parallel; however, Gauss-Seidel iterations are guaran-
teed to converge in this case since the matrix is symmetric positive
definite, while Jacobi iterations offer no convergence guarantee and
require smaller time steps [BF11].

Given the local support of our basis flows, (BTB) is sparse, and
Gauss-Seidel iterations only need to be applied on non-orthogonal
neighboring basis flows. Note that these basis flows are easy to find
since our tiling scheme is regular. Furthermore, the orthogonality
properties we encode into our basis construction further acceler-
ates computations by reducing the number of non-zero coefficients
in (BTB). But, more importantly, our orthogonality property cre-
ates a multicolor scheme [SS99] where basis flows from the same
orthogonality group can be iterated on in parallel. This is a powerful
advantage of our basis structure, since it allows us to invert (BTB)
with the stability of a Gauss-Seidel scheme and the parallelism of
a Jacobi scheme.

Other iterative methods could also be used to invert the sys-
tem while still taking advantage of this multicolor property, for in-
stance, when computing preconditioners for the conjugate gradient
method [BF11]. However, we found that simple Gauss-Seidel iter-
ations are sufficient and yield a stable and parallelizable method to
solve the inversion. This is crucial to the performance of any model
reduced simulator, as force projection is one of the more computa-
tionally expensive steps of these methods. For each of our results
(see Section 7), we use no more than 10 Gauss-Seidel iterations to
project external forces onto our basis.

5.2. Rigid Transport and Rotation

The term Ai jl in Equation 5 can be interpreted as the influence of
basis flow j on basis flow i, with the result being projected onto
basis flow l. We use this interpretation to simulate the transport and
rotation of basis flows.

Although our basis flows have a fixed position, we can simu-
late their motion by interpreting them as rigid objects free to move
about the simulation domain. The influence of basis flow b j on ba-
sis flow bi is evaluated as

ti j =

(∫
Si

b j(x)dx
)/(∫

Si

dx
)
. (18)

The total instantaneous displacement of bi can therefore be eval-
uated by summing the influence of all neighboring basis flows as
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∑ j ũ j ti j . We obtain a new position for bi by scaling this instanta-
neous displacement by the time step ∆t.

However, basis flows are fixed in space, so bi cannot directly
move to its new location. Furthermore, there is in general no basis
flow centered at this new location, so we cannot directly transfer ũi
to another basis flow to simulate the displacement. Instead, we rep-
resent the translation of bi as an interpolation of neighboring basis
flows on the lattice, using an important property of eigenflows: any
translated eigenflow can be expressed exactly as a combination of
eigenflows on a regular lattice. For a lattice with edge length φ, we
have (in 2D, for scalars α,β ∈ [0,φ]),

e(α,β) = csc(πφ)2
∑

i, j∈{0,1}
sin(π|iφ−α|)sin(π| jφ−β|)e(iφ, jφ). (19)

A similar expression also holds in 3D. Since our basis flows are
constructed from eigenflows, are arranged on a regular lattice, and
the influence of the fundamental octave is made as prominent as
possible, this translation property of eigenflows also approximately
holds for our basis flows. Therefore, to simulate the translation of
bi, we project it onto the four basis flows nearest to its new location
on the lattice (eight, in 3D; see Figure 5-right).

Instead of the exact weights in Equation 19, we use linear
weights:

b(α,β) ≈ ∑
i, j∈{0,1}

|i−α/φ| | j−β/φ|b(iφ, jφ). (20)

These weights are simpler to evaluate and are a good approximation
to the trigonometric weights of Equation 19. Another benefit of this
weighting is that, while the trigonometric weights preserve the L2

norm of the decomposition, linear weights preserve the L1 norm:
since we consider linear combinations of translated basis flows,
the linear weights lead to an energy preserving method, while the
trigonometric weights do not. For instance, if a single basis flow
is transported in the domain, distributed to the four closest basis
flows on the lattice (in 2D), and these four basis flows are then all
transported back to the starting location, trigonometric weights will
increase the magnitude of the resulting basis flow coefficient, while
linear weights will recover the initial coefficient exactly.

We apply a similar strategy to rotate basis flows in 3D: assum-
ing basis flows rotate about their center, we can compute the total
rotation of bi caused by the influence of all other basis flows as

∑
j

ũ j ri j with ri j =

(∫
Si

(x− ci)×b j(x)
‖x− ci‖2 dx

)/(∫
Si

dx
)
. (21)

We express the resulting rotation as a vector (axis & amplitude)
scaled by the time step. Since each basis flow is collocated in a
triplet of basis flows aligned along x, y and z, we have an orthogonal
frame in which we can express the rotated axis. The coefficient of
the rotated basis flow is thus transferred to the three collocated axis-
aligned basis flows, and we preserve energy by normalizing the L1

norm of this coefficient transfer. Note that we ignore rotations in
2D since basis flows have a roughly circular vorticity profiles, and
therefore do not significantly change under rotation.

5.3. Energy Transfer and Diffusion

So far, we have only treated energy transfers within a given fre-
quency layer. Next, we show how to also transfer energy across
frequencies, which is fundamental for simulating complex, turbu-
lent behaviors.

As illustrated for 2D in Figure 6, we arrange frequency layers in
a regular graph. To simulate forward energy cascades, each basis
flow receives energy from its coarser neighboring basis flows and
transfers energy to its finer neighboring basis flows. Not all basis
flows are able to process this regular energy transfer: first, basis
flows on the coarsest layer cannot receive energy from any coarser
layers. They instead receive energy from forces in the system (Sec-
tion 5.1). Second, basis flows at the highest frequency have no other
basis flows to which they can transfer their energy. Here, we simply
remove this energy from the system, replicating the dissipation of
energy at the finest scales of turbulent flows. This imitates the effect
of the explicit application of the diffusion matrix D in Equation 4.

For all other “middle” layers, we control the rate at which en-

ergy is transferred: let ‖k‖ =
√

k2
x + k2

y be the scalar wavenumber
associated with a given frequency layer, let ζ(k) be the total energy
in layer k, and let τ(k) be the portion of the energy the layer trans-
fers away at each time step. From Kolmogorov theory [Dav15],
we know that the physically-correct distribution of energy in fully-
developed turbulent flows should be proportional to ‖k‖−5/3. We
design a transfer mechanism based on this steady-state distribution.

Of the energy ζ(k0)τ(k0) transferred by frequency k0, let
q(k0→ k) be the proportion given to frequency k. Note that, since
our transfer mechanism is regular across all frequency layers, we
have ∑k0∈K q(k0→ k) = 1. We choose to distribute energy equally
across all other layers of frequency at most double that of layer k0
(in any direction), as depicted in Figure 6. Each layer, thus, trans-
fers energy to three other layers in 2D, or seven layers in 3D.

Suppose τ(k) = λ‖k‖ε for some scalars λ and ε. At steady state,
the energy transferred and received by a frequency layer should be
equal, therefore

ζ(k)τ(k) = ∑
k0∈K

ζ(k0)τ(k0)q(k0→ k) (22)

⇔‖k‖−5/3
λ‖k‖ε = ∑

k0∈K
‖k0‖−5/3

λ‖k0‖ε q(k0→ k) (23)

and choosing ε = 5/3 yields the desired steady state distribution.
The λ parameter cancels out and does not affect the steady state, but
it controls the rate at which the energy distribution approaches the
steady state. Note that lambda must be small enough so that τ(k)<
1 for all frequencies, but the energy transfer can be performed in
multiple passes if faster transfer rates are desired.

In practice, we transfer energy between basis flows, and not be-
tween entire frequency layers. We must therefore define the energy
of a single basis flow, which is not trivial since not all basis flows
are orthogonal. Furthermore, the natural choice of using (ũi)

2 as
the energy of basis flow bi would require non-linear transfers be-
tween basis coefficients, and would not distinguish between clock-
wise and counter-clockwise swirls. We instead directly use ũi as a
signed replacement for the energy of basis flow bi. Given this, we
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Figure 6: Our energy distribution graph (Section 5.3). Energy en-
ters the system at the coarsest frequencies (green arrows). At each
time step, each basis flow distributes part of its energy to the neigh-
bors indicated with blue arrows. At the finest scale, energy cannot
be transferred to other basis flows, so we remove it from the system
to simulate dissipation (red arrows).

withdraw energy from basis flow bi by simply reducing its coeffi-
cient value by ũi τ(k0).

This is a coarse approximation of the physically-correct behav-
ior, but it leads to satisfactory energy cascades in practice. Note
that, since energy measures are now linear instead of quadratic, we
adjust the expected energy distribution exponent to ε = 5/6. The
steady-state of Equation 23 does not exactly hold with this signed
energy, but ε = 5/6 still gives a good default value about which
other energy distributions can be explored.

We distribute each energy “packet” (ũi τ(k0) q(k0→ k)) to all
neighboring basis flows of frequency k; let Bk be the indices of
all basis flows with frequency k. We define the proportion given to
each basis flow as

v(bi→ b j) = (BT B)i j
/

∑l∈Bk |(BT B)il | . (24)

With this weighting, a basis will transfer most of its energy to
neighboring basis flows with similar structures (i.e., with inner
product close to 1), leading to natural deformations. Note that the
numerator above must be signed, otherwise a clockwise swirl could
decay unnaturally into a counter-clockwise swirl.

Energy is finally transferred from basis flow bi of frequency k0
to basis flow b j of frequency k by adding

ũi τ(k0)q(k0→ k)v(bi→ b j) (25)

to the coefficient of basis b j .

Figure 7 shows the effect of varying energy transfer parameters
λ and ε in our energy transfer method. In general, smaller lamb-
das cause the simulation to be dominated by advection (Figure 7
left). Larger lambdas, instead, dissipate energy more quickly, caus-
ing the simulation to be dominated by buoyancy forces (Figure 7
right). Using a moderate λ (Figure 7 middle-left and middle-right)
leads to more interesting energy transfers. Using ε = 5/6 as previ-
ously suggested then leads to a natural smoke plume, while using
ε =−11/6 leads to a more erratic, exaggerated behavior.

Even though our method uses heuristics, it creates visually ac-
ceptable smoke dynamics. Figure 8 and our supplementary video
compare our method with a full-scale simulation [Sta99] for a sim-

ple smoke plume, to show that we can recreate the overall motion
and features of the smoke in this case.

5.4. Reusing Dynamics Coefficients

The entire simulation dynamics are reduced to computing the inter-
action coefficients ti j, ri j, and (BTB)i j. Note that, contrary to the
original advection tensor A that operates on triplets of basis flows,
our interaction coefficients only involve pairs of basis flows, which
greatly reduce the number of coefficients to compute and store.

Furthermore, we can reuse most of the interaction coefficients
since the interaction of two basis flows only depends on their rela-
tive position, and our basis flows are distributed regularly through-
out the domain. Similarly, interactions only depend on the relative
scale of the basis flows involved, and so they can be computed once
for coarse frequencies and reused for higher frequencies.

We apply a lazy evaluation scheme, re-scaling the two basis
flows involved in an interaction so that their largest dimension has
unit length, before translating them so the first basis flows is cen-
tered at (0,0). We maintain a dictionary of all interaction coeffi-
cients, indexed by the relative sizes and positions of the resized
basis flows. If the interaction coefficient for the resized basis flows
is not present in the dictionary, it is computed (as detailed earlier)
and added to the dictionary.

Each interaction coefficient scales to higher frequencies as a sim-
ple function of the scaling ratio. These relations are derived directly
from Equations 15 and 17, and summarized in Table 2. The inter-
action coefficient for the resized basis flows is thus re-scaled back
to the original basis flow size, and used to evolve the fluid in time.

Since basis flow interactions are local and do not depend on the
simulation domain, we can save the dictionary and reuse it for any
other domain. Furthermore, we can reduce the cost of dictionary
lookups by locally caching the coefficients required by each basis
flow. This reduces computation time by a factor of 10− 50× de-
pending on the scene, at the cost of a 1.5−4× increase in memory.

ε = 0.6
λ = 0.01

ε = 0.8
λ = 0.05

ε = -1.8
λ = 0.05

ε = 0.6
λ = 0.2

Figure 7: Smoke plumes with different energy transfer parameters.
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Figure 8: Smoke plume generated with a full-space simula-
tion [Sta99] (left) and our method (right). Since our method uses
model reduction, it does not perfectly recreate the behavior of the
full-space method. However, our heuristic dynamics do recreate
some visually important features of the smoke plume, such as the
smaller vortices shedding from the sides of the plume.

Coefficient
Scaling Factor Exponent (α)

2D 3D

BT B 0 0
t 1 3/2
r — 5/2

Table 2: Factors for scaling interaction coefficients in Section 5.4.
We obtain coefficients for basis flows with min(k)> 1 by multiply-
ing the corresponding precomputed coefficient by (min(k))α, where
α is given above.

6. Improved Coverage and Obstacle Coupling

In the basis construction of Section 4, we spaced every basis flow
on the same frequency layer by half their support size (φ = 1/2).
However, this leads to gaps in coverage, since each layer contains
points where the flow is always zero (see Figure 9, left). One solu-
tion is to increase the number of basis flows in each layer (Figure 9,
right). For instance, doubling the number of basis flows and sepa-
rating them by a quarter of their support size (φ = 1/4) improves
coverage, but at the cost of additional computation. Note that each
frequency layer would now have four orthogonal groups, but each
group can still be processed in parallel during force projections (see
Section 5.1).

Another solution is to maintain φ = 1/2 spacing, but to offset
basis flow layers independently with respect to each other, e.g. with
an offset of (o(kx),o(ky)), where

o(k) =
(log2 k)−1

∑
i=0

φ

4

(
1
2

)i

=
φ(1− 1/k)

2
. (26)

Figure 9 (middle) illustrates how using this approach improves cov-
erage without increasing the number of basis flows (or computa-
tion cost). Note also that this offsetting scheme maintains the regu-
lar structure of our basis across frequency layers, and all the basis

Figure 9: With φ = 1/2 and no offset, the coverage across two lay-
ers (k = (1,1) in red and k = (2,2) in green) has points of zero
flow (left, at the intersection of red and green centers). By offset-
ting basis flows in each layer, finer layers can cover the gaps left
by coarser layers (middle). Alternatively, using φ = 1/4 creates a
much denser coverage (only k = (1,1) is shown; right). The ba-
sis flows are represented as simplified circular vector fields to help
visualization.

reusability advantages of Section 5.4 remain. Unfortunately, this
offsetting strategy is incompatible with anisotropic basis flows in
3D: since we apply the offset independently for each axis, basis
flows with different alignments get a different offset, and we lose
the property required in Section 5.2 for basis flows to be grouped
as collocated triplets.

For all results in this paper, we use φ = 1/4 as it provides signif-
icantly better coverage than half-support separation. The improve-
ment in coverage is even more significant in 3D because of the
three collocated basis flows at each point. For that reason, we did
not find necessary to use anisotropic basis flows in 3D with the
φ = 1/4 modification. We thus also use the offset strategy for all
our results, which further improves coverage at no additional cost.

User-driven Coverage. We can additionally apply a spatially
varying basis placement tailored, e.g., to scene complexity or artist-
driven simulation constraints. For example:

• if the simulation domain has both large and narrow regions, it
may be sufficient to place finer-scale basis flows exclusively in
the narrow regions and near boundaries, or
• if we desire view-dependent simulation accuracy and refine-

ment, we can place higher-frequency basis flows closer to the
camera (i.e., where a viewer is most likely to notice finer-scale
details), or
• we can place basis flows only where smoke particles are present.

These three strategies are illustrated in Figure 10 and two are used
in the results of Figures 13 and 15.

Although they further approximate the simulation dynamics,
such basis flow placement strategies can provide a significant ad-
vantage in computation speed. Note that some strategies may re-
quire adding and/or removing basis flows during simulation; since
we precompute all local interactions once (Section 5.4), doing so
does not incur any significant overhead.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



O. Mercier & D. Nowrouzezahrai / Local Bases for Model-reduced Smoke Simulations

Figure 10: Spatially-varying coverage strategies. Left to right:
placing finer-scale basis flows closer to boundaries; view-
dependent coverage generates richer dynamics closer to the
viewer; basis flow placement biased to regions with particles, since
velocities further from particles contribute less to their behavior.

6.1. Curved Boundaries

We adapt our simulation method to new domain shapes by tilling
the domain with our basis flows. However, given their rectangular
support and the regular lattice positioning, our basis does not natu-
rally adapt well to angled or curved boundaries. Figure 11 (bottom
left, dotted line) illustrates “staircasing” artifacts due to poor cov-
erage near boundaries for coarser simulations.

We propose a basis deformation scheme to solve this problem:
instead of only tiling basis flows in the simulation domain Ω, we
allow basis flows to overlap boundaries, as long as their center is
within the simulation domain and the distance from their center to
the nearest boundary exceeds 1/4 their support width. We represent
domain boundaries and obstacles with signed distance functions
(SDF), and we displace and warp basis flows that overlap bound-
aries as follows: for each corner of the basis flow support located
inside an obstacle, we uniformly squash the basis flow along the di-

Figure 11: Top: we displace basis flows (blue) that overlap a
boundary (black) along the SDF gradient (green arrow) and de-
form them (right) to maintain their area. Bottom: without basis de-
formation, the extent of the basis flows (dotted line) does not prop-
erly cover the domain, and coarse simulations can exhibit staircase
artifacts. Our deformation eliminates these issues (right).

Figure 12: Obstacle coupling. Left to right: we evaluate the ob-
stacle’s distance-weighted normal velocity near its boundary; the
velocity is projected onto basis flows near the boundary, allowing
basis flows to intersect the object; the resulting divergence-free flow
approximates the normal velocity of the object.

rection of the SDF gradient, leaving the opposite corner fixed, until
the initial corner is out of the obstacle. We then uniformly stretch
the basis flow in the direction perpendicular to the SDF gradient to
recover the original area (volume in 3D) of the basis flow.

The deformed basis flow, even after area preservation, may no
longer be divergence-free if more than one corner has been moved.
The stretching nevertheless helps reduce staircase artifacts and re-
sults in a more visually pleasing vector field (i.e., one where parti-
cles do not seem to be “compressed” in free-space for no apparent
reason). Note that, in moving a corner and stretching the basis flow,
we sometimes force another corner out of the simulation bounds. In
practice, we iterate once over all corners while preserving the area,
and then make a second pass to move each corner into the domain
without trying to preserve the area, to ensure all corners are within
the simulation domain.

Given the deformed basis flow support, we map the original flow
b to a point x of the new support as M

(
b
(

M-1 (x)
))

, where M is
the bilinear transform from the original axis-aligned support to the
deformed support. We compute M-1 with Newton iterations, using
no more than five iterations in all our tests.

In principle, new interaction coefficients should be computed for
each of the deformed basis flows. This would however be compu-
tationally expensive, and we instead simply use the coefficients of
the original undeformed basis flows. This further approximates the
fluid behavior, but still yields satisfactory results in practice.

6.2. Obstacle Coupling

In order for moving obstacles to influence our simulation, we
project the normal velocity at the boundary of dynamic obstacles
onto our basis. Figure 12 illustrates this process for a circular ob-
stacle moving downward.

We evaluate the normal flow near obstacle boundaries using the
difference of the SDF of a dynamic obstacle at two consecutive
time steps, SDF(t −1) and SDF(t), as(

(SDF(t−1)−SDF(t))
/

∆t
)
∇SDF(t) max

(
1−|SDF(t)|

/
σ,0
)

(27)

where ∇SDF(t) is the unit gradient of the current SDF, ∆t is the
time step, and σ > 0. The last term reduces the strength of the nor-
mal flow as we move away from the boundary, which makes the
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Figure 13: 3D smoke plume. Buoyancy and advection initially lead
to the characteristic mushroom shape, after which energy transfers
introduce turbulent behavior. We use only two frequency levels in
this simple simulation, with a coverage that activates basis flows
only around smoke particles, as in the rightmost part of Figure 10.

normal flow continuous in Ω, and σ effectively controls the dis-
tance at which moving obstacles influence the simulation.

We then project this normal flow onto only the basis flows that
fall within a neighborhood band of width σ around the boundary,
including basis flows that intersect the interior of the obstacle. Here,
we do not apply basis deformation (Section 6.1) during projection.
The projected normal flow is divergence-free, which makes its be-
havior more natural around the object. For instance, in Figure 12,
the projected normal flow pushes and drags smoke particles in the
direction of obstacle motion, as expected, but it also “rolls” parti-
cles around the sides of the obstacle, which is a desirable behavior
not present in the normal flow itself prior to its projection.

This additional projected boundary flow is then added to the ve-
locity field when advecting smoke particles. We also add the com-
puted boundary flow coefficients to the original basis flow coeffi-
cients when computing fluid interactions (as per Section 5), so that
obstacle movement can generate secondary motions.

7. Results and Discussion

We apply our method to various smoke simulation scenarios and re-
fer readers to the supplemental video for full animation sequences.
Figure 13 illustrates a simple 3D smoke plume. Energy enters the
system from external buoyancy forces, which we model as small
vertical vectors projected onto our basis at each particle location.
Figure 1 demonstrates interactions with a static triangle mesh ob-
stacle. As explained in Section 6.1, our basis flows are deformed
slightly to better adjust to the obstacle shape.

Figure 14: Hand pushing through a smoke cloud.

Figure 14 shows a hand moving through a smoke cloud. No
buoyancy is used in this scene, and energy is only created from the
hand’s movement. We again use a triangle mesh to represent the
obstacle, which is converted to a signed distance field in order to
compute dynamic obstacle interactions, as explained in Section 6.2.
Our obstacle coupling method is approximate, and particles can
still collide with moving objects (e.g., see the 2D moving obstacles
in our accompanying video). This is generally unavoidable since
our basis flows are not tailored to specific obstacle geometries, but
the moving hand in Figure 14 is illustrative of the effectiveness of
our method with complex obstacles.

Figure 16 shows how increasing the number of frequency lay-
ers impacts the resolution of the simulation and the ability of our
method to cover narrow simulation domains. This test uses the basis
stretching method of Section 6.1, which further improves domain
coverage.

Finally, Figure 15 shows a smoke simulation inside of a glass

Figure 15: Smoke plume inside a glass bunny. Three frequency lev-
els are used, which is made possible by using the coverage strategy
of Figure 10-left. The finest basis flows are only used where neces-
sary (e.g., in the ears), reducing the number of basis flows by 10×.
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1 level
14 basis flows

2 levels
199 basis flows

3 levels
1234 basis flows

Figure 16: Comparison of simulations using different numbers of
frequency layers. Higher frequency layers have smaller basis flows,
which improves simulation details and domain coverage.

bunny, again illustrating our method’s ability to adapt to complex
simulation domains without any need for customized basis precom-
putation. We apply the tiling strategy in Figure 10-left for this ex-
ample, where finer basis flows are only placed in narrow regions of
the domain (e.g. the bunny’s ears) and near boundaries. Tiling the
entire domain with basis flows at all scales would require 412K ba-
sis flows, whereas our adaptive placement uses only 41K (i.e., 10×
fewer basis flows) while still allowing the particles to reach and fill
the ears of the bunny.

7.1. Computation Times

We present a breakdown of computational costs for all our 3D
scenes in Table 3. All results are computed on an Intel i7 quad core
running at 3.4 GHz with 32GB of RAM.

The actual dynamics computations (Basis Advection and Energy
Transfer columns) are never the bottleneck of our method, which
showcases the benefits of only having to compute interactions be-
tween a few basis flows in local neighborhoods. The cost of basis
flow deformation (Section 6.1) depends greatly on the scene; all
scenes (except Figure 13, which has no obstacles) use mesh ob-
stacles, where SDF computation is costly but could be made more
efficient with proper acceleration structures. This is most problem-
atic in the “Glass Bunny” scene (Figure 15) where, given the low
number of basis flows, the relative cost of basis stretching (which
depends heavily on the number of particles) increases.

As is often observed with model-reduced methods, the two most
costly operations are the computation of external forces and parti-
cle advection, since these operations require conversions between
the reduced- and full-spaces. Our particle advection implementa-
tion is not performance-optimized: we only parallelize inner loops
on the CPU using OpenMP. An end-to-end GPU implementation is
likely to improve performance measurably, whereas we currently
only leverage the GPU to accelerate external force projection. Note

that particle and basis data are both well-suited for representation
in textures, and velocity fields can be directly rasterized into output
buffers. We leave such accelerations to future work.

Our method is usually memory bound, especially in the scene of
Figure 1. Recall that our interaction coefficient cache (Section 5.4)
amplifies the memory costs, trading memory for performance, but
we still find the improvements in compute cost significant enough
to justify the additional required memory.

Overall, the computational cost of our simulations is higher than
those reported by previous model-reduced methods [DWLF12,
KD13, LMH∗15]. However, we operate in a different regime; pre-
vious methods typically only use a few hundred globally-supported
basis functions, while we use several thousand localized basis
flows. This inevitably increases the cost of total flow reconstruc-
tion and particle advection, for instance, since the contribution of
all basis flows must be accumulated. Nevertheless, we believe the
coverage flexibility and the ability to adapt to dynamic domains
justify the higher cost of our method.

8. Conclusion and Future Work

We presented an end-to-end model reduction method for adaptive
multiscale smoke simulations. We detailed a novel vector field ba-
sis construction that yields divergence-free basis flows with local-
ized support and beneficial orthogonality properties. We showed
how basis flow interactions can be precomputed and reused across
different simulation domains and with dynamic obstacles.

Even though our method does not aim to compute a physically-
accurate solution of the Navier-Stokes equations, it succeeds in
generating visually plausible simulations. We therefore believe that
the flexibility our method offers with its dynamic basis placement
strategies, interaction coefficients reusability over any simulation
domains, and simple energy transfer controls is pertinent for com-
puter graphics applications.

In the future, we would like to investigate new coverage schemes
during basis construction: for instance, even if our power-of-two re-
finement scheme is a natural choice, we may be able to obtain better
coverage from, e.g., a power-of-

√
2 refinement. We would also like

to investigate the fluid authoring capabilities offered by the local
nature of our basis flows, and are interested in extending our basis
construction to other tiling patterns such as hexagonal grids. We
are also interested in extending our technique to other simulation
problems, such as the simulation of free-surface behavior, where
our ability to adapt to changing simulation domains could lead to
efficient model-reduced liquid simulations.
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