
IFT6095 - Final Project

Olivier Mercier

This project is based on the paper Matrix Row-Column Sampling
for the Many-Light Problem [Hašan et al. 2007]. The paper shows
a way of approximating the contributions of many lights (e.g.
100,000 lights) by using a sampling approach to cluster the lights.

This report follows the structure of the project, which contains two
main parts. First, we describe the Virtual Point Light (VPL) solu-
tion we use to compute global illumination in the scenes. Then, we
explain how those lights are processed with the method presented in
the paper so that only a reduced set of scaled VPLs is used to render
the final image. We then show results produced by our method by
comparing them to the accumulation of all VPLs, and also present
timing results. We conclude with future work and some thoughts
on the difficulties encountered during the project.

1 Virtual Point Lights

We take as input the scene objects and the position of a few light
sources. It is easy to compute the direct illumination from those
light sources. But to compute the contributions coming from global
illumination, we place secondary light sources in the scene, called
VPLs. A VPL placed on a surface approximates the illumination
coming from one of the light sources that is reflected in the scene
from that surface. We assume here that all surfaces are diffuse, so
the VPLs always have a constant BRDF and always light the scene
in the same way. We also assume that the original light sources
have a radiance distribution equivalent to any other VPL, so that
we don’t have to treat them as special cases.

For each light source, we distribute VPLs by doing a rendering of
the scene from the point of view of the light. To account for every
direction, we use a hemicube map around each VPL. This hemicube
map stores the depth, normal and color of the scene. For each pixel
of this hemicube map, we place a VPL in the direction of this pixel
using the depth at this pixel, which effectively deprojects the pixel
into the scene. Figure 1 shows a 2D version of this process. After
the VPLs are distributed in the scene for each initial light source,
there is no additional difficulty in projecting more VPL for each
secondary VPL. This is a simple iterative process of throwing VPLs
from the initial light sources (level 0) to obtain the level 1 VPLs, and
then throwing VPLs from the level 1 VPLs to get the level 2 VPLs,
and so on. The bottom row of figure 3 show the VPLs for a different
maximum VPL level, i.e. 0, 1 and 2 maximum VPL levels. We use
vi to represent a VPL, and note voi for the i-th VPL thrown from
VPL o.

There are multiple factors to take into account to determine the
color and intensity we assign to a VPL deposited in the scene. Since
we sample the VPLs on the hemicube instead of sampling the di-
rections on the spheres, we need to adjust the VPL power accord-
ingly. For instance, the directions sampled by the corners of the
hemicube will be more densely sampled, so the VPLs in those di-
rections should have a smaller weights than the VPL thrown in the
center of a hemicube face. By assuming the hemicube faces are at
a distance 1 from the VPL vo, and using simple trigonometry, we
find the sampling density in the direction of a given VPLs voi to be√

1 + d2i

Figure 1: Throwing secondary VPLs voi from a given VPL vo. The
scene is rendered from the point of view of vo and stored on a
hemicube. A VPL voi is thrown through each texel of the hemicube.

where di is the distance between vo and the pixel on the hemicube
in the direction of which voi is thrown. For a given VPL vo, define

So =
∑
i∈Po

1√
1 + d2i

where Po is the set of all VPLs thrown from vo. The weight as-
signed to VPL voi is then

1

So

1√
1 + d2i

.

The deposited VPLs also have to be adjusted with respect to the
normal of the surface they are deposited onto, as well as the color
of this surface. Note that all this information is easy to obtain since
we store it on the hemicube. Let ni be the normal at the point where
voi is deposited, no the normal on the surface where vo is located,
loi the normalized vector from vo to voi , and doi the distance from vo
to voi (See figure 1). The VPL radiance is weighted by

bcos(n0, l
o
i )c · bcos(ni,−loi )c
(doi )

2

to take into account the relative angles of the surfaces. To summa-
rize, the radiance of voi is

(radiance of vo) · (color of receiving surface) · bcos(n0, l
o
i )c · bcos(ni,−loi )c
(doi )

2
.

The final image is computed as the sum of the direct illumination
from all VPLs. This is easily done by rendering every image lit by
only one VPL to a texture, and accumulate the results for all VPLs.
Note that a high enough precision must be used for the textures,
since the individual contributions of some VPLs is very small. In
this project, we use 32 bits per color channel. Figures 2 and 3 show
global illumination results from accumulating the contributions of
many VPLs.

2 Matrix Row-Column Sampling

The goal of sampling the VPLs is to get a reduced set of VPLs so
that the accumulation of all light contributions is faster to compute.



The approach used in the paper [Hašan et al. 2007] is to select a
few surface elements in the scene, look at the contribution of each
light with respect to only those selected elements, and then select
a reduced set of VPLs based on the obtained information. We split
the details of our implementation here in two main steps : sampling
and clustering.

2.1 Sampling

To sample the image, we render the scene with all VPLs on a very
small texture (16x12 pixels instead of 1024x768 pixels for the full
image). This is different than sampling pixels in the image, as it
instead averages the contribution of lights over multiple pixels.
This averaging approach has some advantages. First, it is trivial to
implement, as the only thing to do is to reduce the rendered texture
sizes. In the paper, they select surface elements with ray tracing,
and compute the VPL contributions with a hemicube shadow map
over each surface sample. In our case, we reuse the hemicube
shadow maps centered at the VPL positions that were used to throw
VPLs in the scene, so no additional code is required.

A second advantage is that if we randomly pick surface samples,
we might pick very bad samples. Consider a scene like the one in
figure 5 with the camera view as in subfigure e). We are interested
in rendering the global illumination behind the holed wall, but if
the surface samples we pick happen to all fall on the holed wall,
the contributions behind it will be ignored. By averaging the
contributions over multiple pixels, we make sure to take all parts of
the scene into account.

Using this averaging approach, the definitions of the reduced
estimators derived in the paper (section 3.4) cannot a priori be used
directly for our implementation. However, the reduced estimator
they propose is only an unbiased estimators for their reduced
matrix R, which is only an approximation of the full matrix A.
Therefore, using their estimator with our averaged samples, we
will still get an unbiased estimator for some averaged matrix, say
Q, even if this matrix is not the same as their matrix R. Whether
their matrix R or our matrix Q is better approximation of A is
unclear, since in both cases, increasing the number of samples will
make Q and R converge to A. This justifies using the estimator
presented in the paper for our situation.

2.2 Clustering

Once the contribution of each VPL is estimated from the averaged
surface samples, a reduced VPL set is selected to represent all
VPLs. We use the same idea as in the paper, i.e., clustering the
VPLs and then selecting a representative for each cluster. As in the
paper (section 3.5), we split the clustering into two phases. The
first one (phase 1) uses clustering by sampling, and the second
(phase 2) uses clustering by splitting. As in the paper, a portion of
clusters are computed with phase 1, and the remaining clusters are
computed with phase 2.

Our phase 2 implementation follows the paper exactly. However,
our phase 1 implementation uses a slightly more aggressive
approach. As in the paper, we select cluster centers, and then
regroup VPLs together by assigning them to their closest cluster
center. But instead of selecting centers at random and risking
to get a very bad clustering, we proceed as follows. We begin
by picking the first cluster center at random, and for each VPL

we compute its distance1 to the cluster center. We then pick
the second center to be the one that is farthest from the first
center, and for each VPL we compute the sum of the distances
to both centers. The third center is the one whose total dis-
tance from the previous centers is the greatest, and so on. We
repeat the process until a given number of cluster centers is reached.

Since this approach is slower than what is presented in the paper, we
also implemented a simplified phase 1, where the cluster centers are
picked uniformly at random. This doesn’t yield very good cluster
centers, but it allows to compare the time taken by our method with
something that is closer to what is used in the paper.

3 Results

We present here results for two different scenes, along with timing
results.

3.1 Cornell Box

We test our implementation on a simple Cornell box scene. Figure
2 shows the global illumination computed with an increasing
number of VPLs. This uses all VPLs and doesn’t use the sampling
algorithm. The results confirm that our VPL implementation is
satisfying, as increasing the number of VPLs increases the quality
of the illumination, and the images converge. Note that using 85
VPLs (subfigure a)) creates some bright and dark spots in the
image, while using more VPLs yields smoother results. Note
also that the illumination from VPLs has to be clamped to avoid
problems caused by the division by the squared distance when a
VPL falls close to a corner. Still, some artifacts remain visible
when using few VPLs, because those VPLs are scaled by a large
value in order to represent the illumination of their whole cluster.
When using more VPLs, the individual contribution of each VPL
is smaller, and those artifacts are less noticeable.

Figure 3 shows the effect of increasing the maximum level of VPLs
(i.e. the number of light bounces). Those results use few VPLs
so we can easily see the VPL distribution after 2 bounces, so the
quality of the results is not excellent.

Figure 4 compares our sampling method to the accumulation of all
VPL contributions. We see that the sampling does a good job of
selecting meaningful VPLs. For instance, it selects more VPLs on
the colored walls than on the white wall, as the colored walls are
closer to the sphere and the monkey head, and therefore contribute
more in the illumination of the scene. Also, the results from using
150 sampled VPLs or all 1327 VPLs are similar.

3.2 Holed Wall

We tested our implementation on a scene where part of a room is
only lit by indirect illumination. The scene can be seen in figure
5a). Figure 5b) shows the position of the initial light2 and the
VPLs cast in the scene. Note that we use a very strong light so that
indirect illumination effects are more clearly visible.

Subfigures c) and d) show the scene from the same camera view.
Subfigures c) shows all VPLs, while subfigure d) shows the VPLs

1By distance we mean the distance used in the paper.
2The initial light can be seen at the bottom of the figure. It is the only

one not on a surface.



selected by the sampling algorithm. Since the left part of the room
is not visible from this point of view, the VPLs falling on the red
wall are not judged important. Only a few of them are selected
near the bottom of the wall, where their contribution to the visible
part of the floor is at its highest.

Subfigures e) to h) show another point of camera view. This time,
the left part of the room is visible, so the distribution of VPLs se-
lected by the sampling is different. Subfigure e) shows all VPLs
and subfigure f) shows the VPLs selected by our sampling. We see
that more VPLs are selected on the red wall, since they greatly af-
fect the part of the scene seen through the holed wall. Subfigures g)
and h) use the VPLs shown in subfigures e) and f) respectively, but
do not display the VPLs. We see that both results are similar.

3.3 Computational time

We compare the time taken by our algorithm for different settings.
Table 1 contains all timing results. It indicates the total number
of VPLs thrown in the scene (total nb VPLs). It also indicates
whether we use all VPLs (render all VPLs) or only the sampled
VPLs (sample VPLs). If sampling is used, we indicate the number
of sample VPLs used (nb sample VPLs) and the number of clusters
computed by the phase 1 of the clustering algorithm (nb phase 1).
We also indicate whether or not we use the simplified version of
phase 1 clustering (simplified phase 1). The time appears in the last
column, in milliseconds. The Cornell box scene is used for all tests.

When 331 total VPLs are used, we see that the sampling approach
can reduce the computational time in some cases. However, when
using a total of 1327 VPLs, the sampling increases computation
times. The problem with our implementation is that all lighting
evaluations are done on GPU, while the clustering is done on CPU.
The clustering is therefore very slow to compute, which explains
the observed performance reduction.

One constant observation is that computing more clusters with
phase 1 reduces computational time, suggesting that phase 1 is
slower than phase 2. This observation is reinforced by observing
that using the simplified version of phase 1 significantly reduces
computational time in some cases. This is due to the fact that
regrouping VPLs according to their closest cluster center is a
costly operation. This issue is noted in the paper, where some
accelerations are suggested (section 4), but we did not implement
them.

Unfortunately, a GPU implementation of the sampling and cluster-
ing would be necessary to significantly test the performance of the
sampling approach.

4 Conclusion

We have shown our implementation based on Matrix Row-Column
Sampling for the Many-Light Problem [Hašan et al. 2007] gives
satisfying results. Even if we cannot conclude that the sampling
reduces computational time, we did show that the method selects
a meaningful VPL subset, and that the results rendered from this
subset are comparable the results using all VPLs.

Our implementation could be improved in many ways. First,
even if using a hemicube rendering to distribute VPLs in the
scene is fast, it gives a VPL distribution that is too regular. A
random sampling would give a more organic distribution and

would avoid grid-related artefacts, which caused problems that had
to be controled in some of our tests (e.g. a line of VPLs falling
near a corner, creating a clear line of artefacts). Also, using a
more intelligent sampling for the VPLs would greatly increase the
efficiency of the method. The hemicube approach throws VPLs
in every direction, even though the directions nearly orthogonal
to the normal of vo generate secondary VPLs voi with very small
contribution to the scene.

Some inherent problems of VPLs were encountered during the
project, mostly artefacts for VPLs falling close to a corner that
have a very high contribution because of the frac1d2 term. Those
VPLs needed to be clamped, and the clamping factor had to be
changed for different scenes. Using a more robust VPL model
would directly benefit the implementation and results.

As mentioned in the paper, shadow maps are not ideal for comput-
ing visibility between lights and surface elements. First, the finite
resolution of shadow maps is sometimes visible in the illumination.
Also, finding an offset bias to control shadow acne that works for
all VPLs in the scene in not easy. This is a parameter that had to be
tightly controlled in our tests.

Overall, the fundamental ideas behind the method are easy to un-
derstand and implement. However, some optimization is required
in order to observe the performances described in the paper. Still,
an unoptimized implementation could be used to precompute a VPL
subset that can then be used in a dynamic scene, as long as the scene
is not too different from the one used for precomputations.

References

HAŠAN, M., PELLACINI, F., AND BALA, K. 2007. Matrix row-
column sampling for the many-light problem. In ACM Transac-
tions on Graphics (TOG), vol. 26, ACM, 26.



total nb VPLs render all VPLs sample VPLs nb sample VPLs nb phase 1 simplified phase 1 time (ms)
331 x 0.29
331 x 50 15 0.24
331 x 50 45 0.22
331 x 50 45 x 0.21
331 x 150 35 0.32
331 x 150 135 0.28
331 x 150 135 x 0.28
1327 x 1.17
1327 x 50 15 5.84
1327 x 50 45 4.82
1327 x 50 45 x 2.67
1327 x 150 35 5.32
1327 x 150 135 3.68
1327 x 150 135 x 2.17
1327 x 600 140 3.93
1327 x 600 540 1.46
1327 x 600 540 x 1.50

Table 1: Computational times for different settings of the method.

(a) 85 VPLs (b) 331 VPLs (c) 751 VPLs (d) 1327 VPLs

Figure 2: Global illumination computed from multiple VPLs. The initial light source is located on the ceiling of the box, and VPLs are thrown
from it. No level 2 VPL is thrown.



(a) Direct illumination only. (b) One level of VPLs. (c) Two levels of VPLs.

Figure 3: Global illumination from different levels of VPLs. The top and bottom figures are the same, except the bottom ones include the VPL
positions. Note that the quality of illumination is not very high here since few VPLs are used, in order to easily distinguish the different VPLs
in figure c). Note that VPLs are displayed even if they are occluded.

(a) 150 VPLs (b) 1327 VPLs

Figure 4: Comparison between the sampling method and the accumulation of all VPLs. The top and bottom rows are the same, but the top
row shows the position of the VPLs. Note that VPLs are displayed even if they are occluded.



(a) Overview of the scene. (b) All VPLs of the scene lit by direct illumination.

(c) All VPLs. (d) Sampled VPLs. Notice how few VPLs appear on the
red wall, which has a small impact on the illumination of
the exterior of the room.

(e) All VPls. (f) Sampled VPLS. More VPLs are sampled on the red
wall as it is an important contribution to the indirect illu-
mination for the visible part of the scene.

(g) Same as e) but VPLs are not shown. (h) Same as f) but VPLs are not shown.

Figure 5: Results for the holed wall scene. The left part of the room is only lit by indirect illumination coming mainly from the large red
plane. The left column always uses all VPLs, while the right column uses the sampled VPLs. Note that VPLs are displayed even if they are
occluded.


