
Eikonal Approximation for Real-Time Height Field Caustics
IFT6042 - Final Report

Olivier Mercier∗

Université de Montréal

Figure 1: Evolution of caustics in the pool scene. The water surface is initialized as a Gaussian bump and animated with a wave simulation.

Abstract

Caustics are a key ingredient to produce believable refractive fluid
simulations. However, their complex nature makes them very costly
to evaluate accurately. For this reason, caustics are often omitted in
real-time applications. In this paper, we present a novel method for
creating caustics using the eikonal equation. We focus mainly on
underwater caustics created by a water interface represented by a
height field, with emphasis on interactive frame rates.

Keywords: caustic, height field, eikonal equation, real time.

1 Introduction

Modelling the behaviour of light is of prime importance for the re-
alistic rendering of any scene. As light rays react to the objects
they encounter, their density changes, which in effect modulates
the amount of energy that reaches different parts of the scene. One
obvious resulting effect is the formation of shadows in regions that
receive less light. Caustics are in some sense the opposite of shad-
ows and appear when light rays converge to a region that receives a
greater amount of energy than its neighbouring region.

One important class of caustics is those created by a small reflective
or refractive object. For instance, a transparent glass sphere placed
between a diffuse surface and a light source will bend light rays and
create a caustic pattern on the receiving surface. Those patterns are
often bounded in space and can thus be simulated using localized
techniques. Other caustics are caused by objects whose size is of the
order of the entire scene. A usual example occurs when simulating
an underwater scene in shallow water, where caustics are caused by
the entire water surface. This surface can cover a large part of the
scene, and its caustics will be found throughout the whole scene.
Techniques for evaluating caustics in such environment thus have
to be very efficient, especially for real-time applications.

∗e-mail:mercieol@iro.umontreal.ca

2 Previous Work

Since caustics are created by the complex interaction of light with
the surrounding scene, computing them exactly is a difficult task.
To bypass this issue, early attempts have used precomputed texture
stitching [Stam 1997] to simulate caustic effects. Another proce-
dural approach was used by Liao et al. [2011] for applications to
cartoon animations. Even if those methods do not give realistic ef-
fects, the patterns they create are plausible. This suggests that a
physically based simulation is not necessarily required, as long as
the general appearance of caustics is correct.

One of the first methods for creating physically based caustics uses
backward ray tracing [Arvo 1986]. This intuitive method computes
the illumination at an intersection point between a view ray and a
diffuse surface by sending rays from this point towards the scene
in hope of reaching light sources. This would in theory give per-
fect results, but the method suffers from all the usual problems
of global illumination. More precisely, using too few light direc-
tion samples produces a high level of noise in the resulting images.
Computing caustics with this approach in complex scenes where
multiple refractive and reflective objects are present is therefore in-
efficient. Nonetheless, interactive frame rates can be achieved for
simple scenarios such as the one of interest in this paper, e.g., caus-
tics caused by a water interface represented by a height field [Yuksel
and Keyser 2009].

Instead of computing caustics from the receiving surface to the
light, direct methods can be used. Photon mapping [Jensen 2001]
is one of the most used techniques of this kind. Light particles are
emitted from the light sources and accumulated on the different sur-
faces they encounter. Illumination can then be computed by looking
at the density of photons on each surface. This global illumination
technique can be used to compute caustic patterns in a physically
correct way [Jensen 1996]. Even if a very large quantity of photons
usually have to be used, approximations and parallelization can be
applied to the method to create caustics at interactive frame rates
[Shah et al. 2007].

Beam tracing [Heckbert and Hanrahan 1984] is another direct ap-
proach where triangular beams of light are propagated in the scene
instead of point particles. Those beams intersect surfaces at trian-
gular regions which can be used to define caustics [Watt 1990]. The
beams are easily created from the triangular mesh of the refractive
object. The main challenge of this approach is to compute the il-
lumination contribution from a beam of light intersecting a diffuse
surface. One solution is to compute the intersection of beams of
light with a scanning plane to accumulate the light contributions
in image space [Nishita and Nakamae 1994]. Many other varia-
tions and improvements of beam tracing have been developed. For

instance, Iwasaki et al. [2002] improve Nishita’s method and opti-
mize it for graphics hardware. In another variant, Brière and Poulin
[2001] use beam tracing with hierarchical structures to accelerate
render times without sacrificing accuracy. Beam tracing is still used
in recent applications [Liktor and Dachsbacher 2011] where beams
of adaptive sizes are used to obtain detailed results at affordable
frame rates.

Even if those three classes of methods are able to achieve interac-
tive frame rates, they can often only do so for simple scenes. Also,
the algorithms are usually inefficient in their simplest version and
only become usable through an optimized and complicated imple-
mentation. The goal of this paper is to study a different approach
that is both efficient and easy to implement.

The field of computational physics has produced methods for com-
puting wave propagation based on the eikonal equation. This differ-
ential equation models the propagation of a wave front by recording
the minimal time at which it reaches each point in space. Solving
this equation has given rise to powerful methods in geophysics, for
instance for the simulation of seismic waves [Buske and Kästner
2004], and very similar methods can be applied to compute light
propagation. The eikonal equation has already been used to accel-
erate ray tracing algorithms [Benamou 1996]. Similarly, Ihrke et
al. [2007] precompute the eikonal solution and use it to determine
efficiently the direction of incident rays. Their method also stores
irradiance values at each node of the grid as the light travels through
the scene and uses those values to integrate the irradiance along a
viewing ray for participating media. Even though this approach is
efficient, the precomputations require time and memory that is not
available in real-time applications. Section 3 will study new ideas
for using the eikonal equation in a more direct and reusable way.

3 Eikonal Interpretation

Light travels at different speeds in different media. Let s(x) be the
(scalar) speed of light at a point x ∈ R3. We define the propagation
cost of light at a point x byF (x) := 1

s(x)
. Given a closed orientable

surface S0, the eikonal equation

‖∇φ(x)‖ = F (x) (1)

with boundary condition{
x ∈ R3|φ(x) = 0

}
= S0 (2)

is a hyperbolic non-linear equation that describes the propagation
of a wave front S0 in a medium of propagation cost F (x).

The solution φ to the eikonal equation, which we will denote from
now on as the eikonal solution, gives the time at which a wave
front reaches a given point in space. Therefore, the isosurface
{x|φ(x) = T} of the eikonal solution gives the position of the
wave front at time T .

A widely used method for solving the eikonal equation is the Fast
Marching Method (FMM) [Sethian 1996]. This method is based
on the wave front interpretation of equation (1) and computes the
eikonal solution on a grid. It is a continuous analogue to Dijk-
stra’s algorithm for discrete graphs [Dijkstra 1959]. The method
begins by initializing a set of grid nodes that will represent the ini-
tial wave front S0. These nodes are flagged as alive. Then, the
method searches for the grid node that is closest to the set of alive
points with respect to the propagation costs F . It stores the travel
time on this node and marks it as alive before looking for the next
closest point. This process continues until all grid nodes are alive.

Under the assumption that light rays cross the interface perpendic-
ularly (i.e., the receiving medium has an infinite refractive index),

we can use the eikonal solution to compute the position of the wave
front at a given time T . Figure 2a shows some of those wave fronts
at different times. Due to the Hyugens principle, a wave front trav-
elling in a homogeneous media (e.g. water) will expand orthog-
onally to itself. The wave fronts are thus always parallel curves.
However, for the very common case of light rays going from air to
water, the refractive indices are 1 for the air and 1.33 for the water.
For such situations, the eikonal solution will be an incorrect approx-
imation of the light front. Nevertheless, it is possible to modify the
eikonal solution by scaling it in the average direction of refracted
light rays. Figure 2b shows that this can give curves that closely fit
the light front.

In this paper, we will use the infinite refractive index approximation
so that we can use the eikonal solution. We leave it to future work
to study how to modify our method for finite refractive indices.

(a) refractive index = ∞

(b) refractive index = 1.33

Figure 2: 2D example of wave fronts (red) from an initial water-air
interface (blue) at different times. Light rays (orange) are refracted
from the interface. (a) Water has refractive index∞ and the wave
fronts are parallel curves to the initial interface. (b) Water has
refractive index 1.33 and the parallel curves need to be modified in
order to approximate wave fronts.

If we restrict ourselves to the case of a water height field refracting
light towards a planar sea floor, the FMM is very efficient. Since the
light propagates from top to bottom, the search for the next closest
point is facilitated. Also, once the wave front has entered the water,
the propagation cost F is constant. We will assume F = 1 for
simplicity.

Note that in figure 2, the wave fronts are computed using
parametrized parallel curves, while the light rays are computed by
simple refraction. We see that even starting with a smooth S0, par-
allel curves can become singular over time, and those singularities
are created where the light rays converge. This intuition is key to
our method since it gives a way to detect regions in which caustics
should be visible.

The following subsections discuss in more details some aspects of
our eikonal approach.

3.1 Implementation with a 3D Texture

We implemented the basic Fast Marching Method on a regular 3D
grid. The FMM is summarized in algorithm 1. The water-air inter-
face is represented by a height field mesh. More details about the
method can be found in the original paper [Sethian 1996]. We use a
heap to store the trial cell, which makes the search for the next cell
to update very efficient.

Initialize 3D grid with values φ = 0;
for all vertices v of the water-air interface do

Find the cell C in which v falls;
Set φ(c)← min(φ(c), distance(v, center of c));
Mark c as accepted;
for all neighbours c′ of c not yet accepted do

Mark c′ as a trial cell;
Update φ(c′);

end
end
while not all cells are accepted do

Find the cell c with the smallest φ not yet accepted;
Mark c as accepted;
for all neighbours c′ of c not yet accepted do

Mark c′ as a trial cell;
Update φ(c′);

end
end

Algorithm 1: Fast Marching algorithm.

Once all cells are marked as accepted, the FMM stops. The grid
then contains the values of the eikonal solution. In order to find the
regions that are near singularities, we compute the curvature at each
point of the grid, based on the intuition of section 3 that regions
of high curvature correspond to regions around singularities. For
a level set function φ such as the eikonal solution, curvature κ is
computed as

κ(φ) = ∇ · ∇φ||∇φ|| = ∇ · ∇φ
F

= ∆φ (3)

and the Laplacian is evaluated with the simple discretization

∆φ(x, y, z) = φ(x+ 1, y, z) + φ(x− 1, y, z)

+ φ(x, y + 1, z) + φ(x, y − 1, z)

+ φ(x, y, z + 1) + φ(x, y, z − 1)− 6φ(x, y, z). (4)

The values are then transferred directly into a 3D texture. We will
denote this texture as the 3D caustic texture. Once this texture is

computed, is can be used to project caustics on any object in the
texture volume. This is the main advantage of our approach, since
we can modify the objects in our scene and still compute caustics
without any recomputation. Also, the caustics can be cast on any
triangulated object without additional difficulty.

3.2 Boundary Conditions

The Fast Marching approach is easy to implement in the interior of
the domain, but boundary conditions have to be treated carefully.
Figure 3a shows a 2D case where the initial interface is linear. In
this case, no caustics should be observed. However, the left-most
cell will propagate in eccentric circles while the right part of the
domain will propagate along lines. The junction between circles
and lines (shown in red in figure 3a) will delimit a region of zero
curvature and a region of positive curvature, which will create an
undesired brighter region. This error is due to the fact that the left
part of the plane that is outside of the domain cannot contribute to
the eikonal solution.

There are two ways to solve this issue. The first is simply to embed
the region of interest in a large enough texture domain, so that those
boundary artefacts do not influence the scene. This solution can be
very costly if the boundary errors propagate rapidly in the scene,
since we need to have a large texture volume that is mostly unused.

A more complicated but more efficient solution is to impose par-
ticular boundary conditions on the wave propagation by modifying
the propagation costs at the boundary cells. Figure 3b enlarges the
problematic region in figure 3a. Suppose we extend linearly the
water-air interface at the boundary, and let C0 bell the grid cell
where the interface crosses the boundary. Let θ be the angle be-
tween the interface and the horizontal. The angle between the ver-
tical and the normal to the extended boundary is also θ. IfC0 was to
update the cell C1 right below it, the result would be incorrect be-
cause the extended interface is supposed to reach C1 α times faster
than C0, where α = 1

cosθ
. This coefficient α can also be computed

as the inverse of the x component of the normalized tangent at the
boundary. If we change the propagation cost at C0 to be α, C0

will reach C1 at the correct time, and the eikonal value at C1 will
be correct. We apply this modification iteratively on all boundary
cells, and then proceed to compute the FMM in the interior of the
domain, thus eliminating boundary artefacts.

In 3D, the solution is fundamentally the same, but the implementa-
tion is more complicated. Each of the six boundaries of the cubic
volume is treated independently. To solve the interior of each 2D
boundary, we begin by initializing the cells that touch the water-air
interface. On these cells, we will use the x and y tangents to modify
the propagation cost as we did for the 2D case described previously.
Figure 4a shows the modified propagation costs F at the interface
on a 2D boundary. Doing a simple 2D propagation on this bound-
ary using the initial travel costs is not sufficient, as regions with a
low travel cost will propagate too quickly in all directions. We in-
stead use a two pass approach. First, we propagate the boundary
using F = 1 everywhere and record at each cell the F value of
the cell that reached it. At the end of this first pass, each cell on
the 2D boundary has been assigned a propagation cost, as shown
in figure 4a. We then do a second pass using those F values to ex-
tend the boundary, as shown in figure 4b. The boundary treatment
is summarized in algorithm 2. This method nearly eliminated the
boundary artefacts in our results.

3.3 Loss of Information from the Viscosity Solution

As shown in figure 2, a point in space can be reached by differ-
ent parts of the wave front at different times, which makes the

for each of the volume’s six 2D boundaries do
for each of the 2D boundary’s four 1D boundary do

if at least one cell touches the water-air interface then
for each cell that touches the water-air interface do

Compute F from the water-air interface tangent;
end
Propagate the eikonal solution in the 1D boundary
until all cells have been set;

end
end
if at least one cell touches the water-air interface then

for each cell crossing the water-air interface do
Compute F from the water-air interface tangent;

end
Propagate the F values in the 2D boundary at propagation
cost 1 until all cells of the 2D boundary have been visited;
Propagate the eikonal solution in the 2D boundary until
all cells are set;

end
end
Propagate the eikonal solution in the 3D volume;
Algorithm 2: Eikonal algorithm with special boundary condition.

(a) Problem (b) Solution

Figure 3: Problem caused by the boundary of the domain on the
eikonal solution. (a) The eikonal solution cannot be influenced by
an interface that lies outside of the domain. The boundary cells will
therefore tend to expand as eccentric circles, creating undesired
curvature. (b) A solution is to modify the propagation cost at the
boundary correspondingly to the angle of incidence of the interface
at the boundary.

eikonal solution a multivalued function. The solution computed
by the FMM is the viscosity solution, i.e., for every point in space
it computes the shortest time taken by the wave front to reach this
point. This causes a certain loss of information in the solution,
which will consequently have an impact on the computed caustics.
Figure 5 depicts (in red) what happens to a region of rays coming
from the water-air interface when we compute the eikonal solution.
The light is concentrated, but since the light rays cannot cross each
other, light will accumulate along thin structures in the domain.

To solve this issue, we can apply a post-processing step to the caus-
tic texture. We choose a threshold height in the caustic texture
where we determine that the rays should have converged. For all
the caustic texture values below this height, we conduct a wave
simulation in the xy plane to simulate the dissipation of light rays.
This is depicted as the blue regions in figure 5.

This post-process requires to choose some parameters, i.e., the
threshold height at which we begin to apply the modification, but
also the parameters used for the xy wave simulation. Those param-

(a) Propagation cost distribution (b) Eikonal propagation

Figure 4: Boundary condition for a 2D boundary of the 3D volume.
(a) The propagation cost of interface cells of a 2D boundary are
initialized with modified propagation cost. The scale green to red
represents high to low propagation costs. This cost is expanded
to the other cells of the 2D boundary by performing an eikonal
solve using F = 1. (b) The interface is then propagated in the 2D
boundary using the new modified propagation costs.

eters essentially determine the speed at which light rays dissipate
after the threshold height is reached. In figure 5, the parameters de-
termine the angle of the blue cones. We see that even though a given
set of parameters might fit perfectly a given region (middle of fig-
ure 5), it will likely give incorrect results for other regions (left and
right of figure 5). However, the results of section 5.1 show that this
rough approximation greatly improves the aspect of the caustics.

Figure 5: Effect of the height threshold modification on different
light structures. We compare the effect without the height thresh-
old (red) and with the threshold (blue). (left) The chosen height
prevents the rays from converging completely. (middle) the height
is correctly chosen for this structure. (right) The viscosity solution
artefact will be visible for a certain time before the height threshold
can dissipate the rays.

4 Wave Interpretation

In order to eliminate the problems caused by the viscosity solution
of the eikonal solution, we study a modified approach. This new
method still uses the idea of propagating the water-air interface in
the 3D domain, but instead of using the eikonal equation, it uses the
wave equation

∂2

∂t2
φ = c2∇2φ. (5)

We initialize φ = 1 at cells intersecting the water-air interface and
φ = 0 everywhere else. This function serves as the initial condition

of the wave simulation. The wave is then propagated iteratively in
the domain, and the wave values are accumulated in the 3D cells at
each step. The accumulated values are then used as a 3D caustic
texture. The process is summarized in algorithm 3.

Initialize φ = 1 at interface cells, φ = 0 everywhere else;
for each cell c do

Initialize causticValue(c) = 0;
end
while not all cells have |φ| < ε do

for each cell c do
CausticValue(c) += φ(c);

end
Iterate wave simulation;

end
Use CausticValue as the 3D caustic texture;

Algorithm 3: The wave algorithm for light front propagation.

The main advantage of using the wave equation instead of the
eikonal equation is that it can deal with intersecting light rays.
When rays converge, the φ values are larger, and they decrease
when the light rays diverge, thus yielding larger accumulated values
where the light density is higher.

The wave approach also requires special treatment of the boundary,
or else the light will reflect on the domain boundary even though
this boundary is not physically part of the scene. To avoid such
artefacts, we add a band around the domain in which we apply a
large damping coefficient to the wave. The damping coefficient is
increased progressively as we go deeper in the band, effectively
pushing the wave values towards zero without causing ripples in
the interior of the domain. This solution is easy to implement, but
has the disadvantage that more cells have to be added around the
domain, thus increasing the computation size. More sophisticated
approaches could be used to impose non-reflecting boundary con-
dition around the domain without using a large additional band of
cells [Alpert et al. 2002].

The wave approach is significantly slower that the eikonal approach
since it must update the φ values in the whole domain for a large
enough number of substeps. However, since the wave equation has
a finite propagation speed [Evans 1998], the solution only has to be
computed in a thin band around the current non-zero values of the
solution. This modification significantly improves the computation
time by reducing the number of cells that have to be treated during
a step to between 5% and 50% of the total cell number.

4.1 Post-Process Modification

The wave equation is more well-behaved than the eikonal equation,
i.e., it does not create singularities [Evans 1998]. Even if this is nu-
merically desirable, it is a problem for caustics. Where the eikonal
equation can concentrate light intensely in just one grid cell, the
wave equation will tend to have a smoother solution and will require
a much higher caustic texture resolution in order to have sharply de-
fined caustics.

To palliate this issue, we can perform a post-process step on the
caustic texture. Instead of using φ as our caustic values, we use
aφb where a and b are user defined parameters. Using this transfor-
mation can increase the separation between high and low values in
the caustic texture, resulting in sharper structures.

5 Results

The following sections present results for the two approaches of
sections 3 and 4. In order to have a realistic setting, the water-air
interface is taken from a wave simulation on a 2D height field.

Note also that in order to have comparable results, the post-process
filter of section 4.1 is applied to all results with different parameters.
Those parameters are chosen by hand so that the caustics have the
same intensity in each image.

5.1 Eikonal Approach

Figure 7 shows results for the buried in sand scene consisting of
three objects partially buried in a slope of sand represented by a
height field. The figure compares the Fast Marching approach (cen-
ter and right) to a low resolution photon mapping rendering (left),
which serves as a reference for the position of the caustic struc-
tures. It also compares the results without (center) and with (right)
the post-process step of section 3.3. We use a 256 × 256 × 256
resolution for the caustic texture. Note that our implementation of
photon mapping did not allow intersections with arbitrary meshes,
so no caustics appears on the three objects.

We see that the marching approach creates caustics along the cor-
rect curves. The photon rendering shows that the caustics should
be diffuse at the top of the slope, then reach a focus height, and be
diffuse again at the bottom of the slope. With our threshold height
modification, the eikonal approach is able to simulate the correct
behaviour in the middle and bottom of the slope. It is not difficult
to choose post-process parameters to make those two regions ade-
quately rendered. However, the caustics at the top of the slope are
too bright in the marching approach, caused by the rays creating
singularities in the eikonal solution too quickly. This could be im-
proved by adding additional post-processing parameters, but there
will always be situations that cannot be adequately represented by
a simple post-process step.

The marching method presents noise at the top of the slope. This
artefact can be reduced by a more accurate initialization of the
eikonal solution, but we were not able to make them disappear in
all cases. The Fast Marching Method is only first order accurate,
which is not precise enough since we compute curvature on its so-
lution, which is a second order operation. Also, since we rely on
the singularities of the eikonal equation to produce our caustics,
numerical instabilities are to be expected.

Figure 6 further highlights the differences between the photon and
marching with post-process images. Figure 6a shows that the inca-
pability of the eikonal equation to treat intersecting rays turns caus-
tics that should have a certain area into linear structures. Figure 6b
shows a region where the threshold height causes at the same time
an over- and under-sharpening of caustics structures. This empha-
sizes the difficulty of choosing this parameter to satisfy all regions
of the scene. One possible solution would be to chose different
post-process parameters for different regions of the scene, but we
have not explored this avenue.

5.2 Wave Approach

Figure 8 shows results for the pool scene consisting of an hor-
izontal plane and two vertical planes. The 3D texture has size
128 × 128 × 128. The figure compares a low resolution photon
mapping (left) and the eikonal approach (middle) with the wave ap-
proach (right). Note that we did not implement photon intersection
with the vertical walls.

(a) Since the marching cannot
deal with intersecting rays, light
areas from photon mapping are
turned into linear structures with the
marching method.

(b) In some regions, the thresh-
old height smooths the caustic too
much, but in others it sharpens it too
much.

Figure 6: Samples from figure 7. For each set, the left image is from
the photon mapping image and the right image is from the marching
with post-process image.

We first observe that the caustics given by the wave approach are a
lot smoother than in the other two figures. This is due to the fact that
the wave simulation is restricted by the finite (and generally low)
resolution of the 3D grid. Even though the highlights from the wave
approach are located at the brightest regions of the caustics obtained
by the other two methods, they do not have the thin appearance we
would expect.

The wave simulation is more difficult to control than the two other
methods. In one dimension, a wave initialized as a positive bump
will propagate as a positive wave localized in space. But in 3 dimen-
sions, the wave does not behave as well and will oscillate between
positive and negative values. The propagated wave is thus not lo-
calized in time. Modification of the wave equation (e.g. clamping
values to R+) helps to have a more localized behaviour, but intro-
duces errors in the solution. The post-processing values therefore
have to be chosen very carefully in order to extract enough informa-
tion from the wave simulation for the 3D texture to be usable. Note
that we do not show the results of the wave approach for the burried
in sand scene as we could not find parameters that give satisfying
results.

Even thought the wave approach is more physically correct than
the eikonal approach (because it allows ray intersection), its many
issues make it impractical. A more stable way of using the wave
interpretation would be to propagate the water-air interface as a 2D
surface wave front, much like an iterative beam tracing method.

5.3 Pool Video

The video1 in the supplementary material shows how the marching
method can be used to compute the caustics when the water-air in-
terface is animated. Some frames of this video are shown in figure
1. The interface is initialized as a Gaussian bump and evolved as a
wave simulation. The caustic 3D texture is 128 × 128 × 128 and
each frame takes about 2.5 seconds to render, which includes the
interface wave simulation and the caustic texture computation.

One advantage of the marching approach is that it is purely deter-
ministic (compared to photon mapping where rays are chosen with
some level of randomness). This allows to have temporally coher-
ent caustics from frame to frame, and thus doesn’t create flickering

1Available at http://youtu.be/sJQs3zDeTpc

frame rate computing computing
texture resolution after texture texture with texture with

computation marching wave
643 49 fps 0.3 sec 17 sec
1283 12 fps 2.5 sec 21 sec
2563 2 fps 26 sec 107 sec

Table 1: Computational time for the pool scene using different res-
olutions for the caustic texture. We show the frame rate obtained
once the texture is computed, the time taken to compute the tex-
ture with the marching method, and the time taken to compute the
texture with the wave method.

on the horizontal floor of the pool. Instabilities can be observed on
the vertical walls near the water-air interface, but they are due to a
poor initialization of the eikonal solution.

The animation shows caustics that behave in a reasonable way, es-
pecially after the first 30 seconds of the video where the surface
reaches a more uniform state that is closer to what we would usu-
ally observe in real life.

5.4 Computational Time

The main advantage of using a 3D texture to create caustics is that
the same texture can be reused even if we change the scene, as long
as the object creating the caustics is not modified. Table 1 shows
the time taken by the different methods for different caustic texture
resolutions. The second column shows the frame rate obtained once
the texture is computed. This is the frame rate at which the user can
interact with the scene with a fixed caustic texture. This is only
bounded by the efficiency with which our implementation can treat
3D textures. The last two columns show the time taken by both
methods to compute the caustic texture.

The wave method is significantly slower than the marching ap-
proach. This is because the wave has to compute multiple steps
and accumulate values over time in order to obtain the texture val-
ues, while the marching method only needs to visit each cell once.
Also, the heap structure used by the Fast Marching Method makes
the front propagation very efficient.

The times for a 64 × 64 × 64 texture resolution show interactive
frame rates, but the obtained resolution is too poor for most appli-
cations. The caustics from a 128 × 128 × 128 are better, and the
times obtained for this resolution show that nearly interactive frame
rates are possible (after the texture has been computed).

Our implementation is in no way optimal, and we believe those
times can be significantly reduced. First, the initialization of the
wave front from the water-air interface could be improved. In our
implementation of both methods, we loop on each vertex of the
water-air height field and look at the cells in which it falls to initial-
ize it. This requires a high resolution for the interface, but makes it
easy to compute the distance from the interface to a cell center. A
more efficient way would be to reduce the water-air resolution and
compute the distance by projecting the cell centers on the water-air
mesh triangles. Also, the water surface simulation could be par-
allelized, and the general treatment of 3D textures could be opti-
mized.

6 Future Improvements

Neither the eikonal or the wave approach treat occlusions or shad-
ows, even though this is an important aspect of any realistically
illuminated scene. For instance, in the buried in sand scene, the

http://youtu.be/sJQs3zDeTpc

three objects should cast shadows on themselves and on the sand.
We did not find a simple way to compute shadows from the caus-
tic texture, since the texture is disconnected from the geometry of
the scene. Computing shadows directly with, e.g., shadow mapping
would not give good results, since this would suppose the light is
coming from a single source or a single direction. Caustics are
created from light converging from multiple directions, so this as-
sumption is clearly wrong in our case. Since the caustic texture is
an indicator of the quantity of light reaching an area, it could pos-
sibly be used as a heuristic to modulate the hard shadows obtained
by shadow mapping. This is however not trivial and would require
additional experimentation.

As pointed out in section 5.1, the Fast Marching Method is prob-
ably not the best eikonal solver for our purpose. Since we com-
pute curvature from the eikonal solution, we would like to have a
method that is at least second order accurate in space. Second order
Fast Marching analogues have been developed [Rickett and Fomel
2000] and could be transparently added to our implementation.

Section 3 also mentions a potential improvement of our method,
namely the extension to finite refractive indices. The infinite re-
fractive index approximation used throughout the paper produces
acceptable results, but usually causes the rays to converge faster
than they usually would in a water and air scene. This extension
would be useful to produce more realistic scenes.

7 Conclusion

We presented two different approaches to produce underwater caus-
tics as 3D textures by propagating a wave front from the water-air
interface. Even if the wave interpretation is more physically correct
and allows intersecting rays, the Fast Marching approach is more
efficient and can produce interesting caustics even for low texture
resolutions. We were not able to compute the caustic textures at in-
teractive rates in our implementation, but the texture does not have
to be recomputed if the scene receiving the light caustics is modi-
fied. In that case, we can achieve interactive frame rates.

Our method is too costly and requires too much parameter selection
to be efficiently used as a general caustic renderer. The low reso-
lution caustics could still be used, for instance, for a video game
application where the water-air interface and its caustic texture can
be precomputed.

8 Additional Notes

The entire code for this project was built from scratch using
OpenGL and the following libraries : glm, GLFW, FreeImage,
AntTweakBar and GLEW. Models for the buried in sand scene
were taken from Blender. The code is available as a mercurial
repository upon request. All ideas for the eikonal and wave ap-
proaches, including boundary conditions and post-processing steps,
are original ideas of the author.

References

ALPERT, B., GREENGARD, L., AND HAGSTROM, T. 2002.
Nonreflecting boundary conditions for the time-dependent wave
equation. Journal of Computational Physics 180, 1, 270–296.

ARVO, J. 1986. Backward ray tracing. In Developments in
Ray Tracing, Computer Graphics, Proc. of ACM SIGGRAPH 86
Course Notes, 259–263.

BENAMOU, J.-D. 1996. Big ray tracing: Multivalued travel time
field computation using viscosity solutions of the eikonal equa-
tion. Journal of Computational Physics 128, 2, 463–474.

BRIERE, N., AND POULIN, P. 2001. Adaptive representation of
specular light. In Computer Graphics Forum, vol. 20, Wiley
Online Library, 149–159.

BUSKE, S., AND KÄSTNER, U. 2004. Efficient and accurate
computation of seismic traveltimes and amplitudes. Geophys-
ical Prospecting 52, 4, 313–322.

DIJKSTRA, E. W. 1959. A note on two problems in connexion
with graphs. Numerische mathematik 1, 1, 269–271.

EVANS, L. C. 1998. Partial differential equations. graduate studies
in mathematics. American mathematical society 2.

HECKBERT, P. S., AND HANRAHAN, P. 1984. Beam tracing
polygonal objects. In ACM SIGGRAPH Computer Graphics,
vol. 18, ACM, 119–127.

IHRKE, I., ZIEGLER, G., TEVS, A., THEOBALT, C., MAGNOR,
M., AND SEIDEL, H.-P. 2007. Eikonal rendering: efficient light
transport in refractive objects. In ACM Transactions on Graphics
(TOG), vol. 26, ACM, 59.

IWASAKI, K., DOBASHI, Y., AND NISHITA, T. 2002. An efficient
method for rendering underwater optical effects using graphics
hardware. In Computer Graphics Forum, vol. 21, Wiley Online
Library, 701–711.

JENSEN, H. W. 1996. Global illumination using photon maps. In
Rendering Techniques’ 96. Springer, 21–30.

JENSEN, H. W. 2001. Realistic image synthesis using photon map-
ping. AK Peters, Ltd.

LIAO, J., YU, J.-H., AND JIA, L. 2011. Procedural modeling of
water caustics and foamy water for cartoon animation. Journal
of Zhejiang University SCIENCE C 12, 7, 533–541.

LIKTOR, G., AND DACHSBACHER, C. 2011. Real-time volume
caustics with adaptive beam tracing. In Symposium on Interac-
tive 3D Graphics and Games, ACM, 47–54.

NISHITA, T., AND NAKAMAE, E. 1994. Method of displaying
optical effects within water using accumulation buffer. In Pro-
ceedings of the 21st annual conference on Computer graphics
and interactive techniques, ACM, 373–379.

RICKETT, J., AND FOMEL, S., 2000. A second-order fast marching
eikonal solver.

SETHIAN, J. A. 1996. A fast marching level set method for mono-
tonically advancing fronts. Proceedings of the National Academy
of Sciences 93, 4, 1591–1595.

SHAH, M. A., KONTTINEN, J., AND PATTANAIK, S. 2007. Caus-
tics mapping: An image-space technique for real-time caustics.
Visualization and Computer Graphics, IEEE Transactions on 13,
2, 272–280.

STAM, J. 1997. Aperiodic texture mapping. European Research
Consortium for Informatics and Mathematics.

WATT, M. 1990. Light-water interaction using backward beam
tracing. In ACM SIGGRAPH Computer Graphics, vol. 24, ACM,
377–385.

YUKSEL, C., AND KEYSER, J. 2009. Fast real-time caustics from
height fields. The Visual Computer 25, 5-7, 559–564.

(a) photon mapping

(b) marching approach without post-process

(c) marching approach with post-process

Figure 7: Buried in sand scene computed with photon mapping and
the marching method. The raw marching method creates caustics in
the correct regions, and the post processing step is able to correct
the width of the caustic structures in some cases.

(a) photon mapping

(b) marching approach

(c) wave approach

Figure 8: Pool scene computed with three different approaches.
The photon mapping and marching approaches give similar results,
while the wave method oversmooths the results.

